
Chapter 1

On Graph Rewriting,
Reduction and Evaluation
Ian Zerny1

Abstract: We inter-derive two prototypical styles of graph reduction: reduction
machines à la Turner and graph rewriting systems à la Barendregt et al. To this
end, we adapt Danvy et al.’s mechanical program derivations from the world of
terms to the world of graphs. We also outline how to inter-derive a third style of
graph reduction: a graph evaluator.

1.1 INTRODUCTION

Graph reduction [39] has become a key subject in the specification and implemen-
tation of modern functional programming languages. As such, there is a need for
models in which one can reason about the semantics of languages that make use
of graph reduction. To this end, two general approaches have been developed: the
foundational application of graph reduction as described by the term graph rewrit-
ing of Barendregt et al. [4] and the use of graph reduction as an implementation
technique as pioneered by Turner [38]. Both approaches give rise to semantic
descriptions of their own. The semantics are constructed separately, possess dif-
ferent properties, and are used for different purposes. Often however, the language
theoretician has the need for an efficient implementation and the language imple-
menter has the use of a more abstract model. Thus, the problem arises of relating
such semantics as exemplified for λ -terms and for Landin’s SECD machine by
Plotkin [16, 37].

We are motivated to consider this problem in the setting of graphs since graph
reduction is closer to the actual implementations of modern functional languages,
and despite this, the two approaches have yet to be fully connected. Our approach
to this problem is to mechanically inter-derive graph rewriting à la Barendregt
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and reduction machines à la Turner. Hereby, we maintain an explicit connection
between the two semantic artifacts.

Our domain of discourse is the applicative language of S, K and I combinators
with no extensions as defined by the equations:

Sxyz = xz(yz), Kxy = x and Ix = x.

Since the language is not extended with primitives, we consider normalization to
normal form as opposed to head normal form or weak head normal form. Normal-
ization to normal form ensures reduction under right branches, which incidentally
accounts for the operations needed to support functions that are strict in their ar-
guments.

1.1.1 Rewriting à la Barendregt

The work of Barendregt et al. [4, 5] provides an account of term graph rewriting
as an adaptation of term rewriting that includes the notion of graph reduction.
Among other things, this work is used to model sharing [21], to aid language
implementation [2, 25, 28], and is part of the foundational work on graph reduc-
tion [36].

We briefly exemplify Barendregt et al.’s work with a graph rewriting system
for the language of S, K and I. For a more elaborate presentation, we refer readers
to the original work [4]. An expression is given by a labeled acyclic graph over
the function symbols F = {S,K, I,A}. A graph is defined by a set of nodes N; a
label function lab : N→ F mapping nodes to labels; and a partial successor func-
tion succ : N ⇀ N×N from nodes to child nodes. In our case, succ is defined on
exactly the nodes with label A, which denotes an application, and it produces the
operator and operand of the application. A rewrite rule is a triple 〈g,r,r′〉 where
the first component is a graph, and the second and third are nodes, named respec-
tively the left root and the right root. A rewrite will in part consist of redirecting
the left root to the right root. The rewrite rules for I, K and S are written below in
the linear notation for graphs. Note that ‘+’ is used to combine graphs, resulting
in a possibly disconnected graph.

I-rule: 〈 r : A(I,x), r, x 〉
K-rule: 〈 r : A(A(K,x),y), r, x 〉
S-rule: 〈 r : A(A(A(S,x),y),z) + r′ : A(A(x,z),A(y,z)), r, r′ 〉

A rule of the form 〈g,r,r′〉 is said to be a redex of a graph ĝ if there is a label
and successor preserving morphism on graphs, say f , mapping the subgraph of
g rooted at r to ĝ. In other words, f must be able to construct ĝ by filling in
placeholders in r and appending the result to some other graph (possibly the empty
graph). Rewriting is performed in three steps: given a redex 〈g,r,r′〉, (1) build a
copy of r′, sharing any nodes contained in r; (2) redirect all occurrences of r to
the copy of r′; and (3) garbage collect all nodes that are no longer accessible from
the root of the graph. As usual, a graph is said to be a normal form if no redex
exists.
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1.1.2 Reduction à la Turner

By adapting graph reduction to combinatory logic, Turner created a convenient
and efficient target for the implementation of functional languages [38]. He did so
by cleverly combining the simple reduction mechanism of combinatory logic with
graph reduction. A considerable body of work has since followed this path in the
form of alternative translation techniques [10], different sets of combinators [23],
concurrent and parallel extensions [8, 29], and alternative reduction machines [9,
27, 28, 34, 35], representing the current state of the art in functional-language im-
plementations.

Turner’s scheme operated by first translating λ -terms to a graph built by a
set of basic combinators amounting to the assembly language of the reduction
machine. The reduction machine executes by unwinding the spine of the graph
while maintaining a ‘left ancestor stack’. When a left hanging atom (a leaf node)
is encountered the machine applies the contraction rule for the atom in question.
The contraction itself is implemented in terms of a graph transformation, where
the arguments are made available through the ancestor stack. By unwinding to
the left, the machine implements normal-order reduction, where functions are re-
duced with possibly unevaluated arguments. However, for primitive operations,
such as addition, the arguments must first be fully evaluated, which requires spe-
cial care in representing and manipulating the ancestor stack.

1.1.3 On term rewriting, reduction and evaluation

Languages as defined by terms2 have received considerable attention with respect
to specifications, implementations and their interconnections. Interconnecting
such semantic artifacts is often done by methods tailored to the concrete seman-
tics under consideration. Such methods may provide elegant calculational con-
nections [24], but these connections are provided on a case by case basis. An
alternative approach is to mechanically inter-derive semantic artifacts by program
derivation [12]. The correctness of the connection then follows as a corollary
of the correctness of the individual transformations, where the calculations have
been generically done once and for all. The derivational approach we consider
here has successfully been used to connect a wide range of artifacts and to reflect
changes made to one in the other [7, 14, 16, 26].

1.1.4 On graph rewriting, reduction and evaluation

In this article, we present a systematic method to derive a reduction machine from
a graph rewriting system. We do so by adapting the methods used in the set-
ting of term rewriting and evaluation to the new setting of graph reduction. Our
work hinges on the fact that each inter-derived semantic artifact gives rise to the
same trace of successive contractions [16]: the inter-derivation acts only on the
functional glue between each contraction. We illustrate the method by deriving a

2By terms we mean trees where each node has at most one parent.
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reduction machine for the language of S, K and I combinators as the direct result
of a series of mechanical program transformations on a graph rewriting system for
the same language. Our presentation focuses on the foundational aspects of graph
reduction, and we will not be treating any issues with respect to high-performance
reduction machines and language implementation. Our contribution is to connect
the graph rewriting system for S, K and I à la Barendregt with the reduction ma-
chine for S, K and I à la Turner.

Prerequisites. All of the semantic specifications are presented as implementa-
tions in Core Standard ML with additional use of references to account for the
implementation of the formal rewriting axioms. Readers acquainted with Stan-
dard ML [30] or a related functional language are equipped to follow the presen-
tation. The reader should be familiar with the derivational approach of Danvy et
al. [12, 13], in particular refocusing, lightweight fusion, refunctionalization, and
the direct-style transformation. Some prior experience with combinatory logic,
term rewriting, graph rewriting and reduction machines is preferable and can be
obtained from many sources [3, 11, 34, 36].

Overview. The rest of this article is structured as follows. In Section 1.2, we
begin by presenting a reduction machine for the language of S, K and I combi-
nators that closely matches the original presentation of Turner. Then we take the
calculus of S, K and I combinators in the style of Barendregt et al. and imple-
ment a full graph rewriting system in Section 1.3, where we have made explicit
all of the implicit operations of such a system, using the same data types as in
Section 1.2. With the graph rewriting system as starting point, in Section 1.4, we
systematically derive the reduction machine of Section 1.2, presenting all interme-
diate transformations. Finally, in Section 1.5, we consider further transformations
to the reduction machine and compare the results to other known artifacts. We
conclude in Section 1.6. The complete derivation, along with tests, can be found
on the author’s home page.

1.2 GRAPH REDUCTION

In this section, we present a reduction machine à la Turner in the form of a state
transition system. We start with the type for graphs. A graph is a reference to
a node that can either be an atom, corresponding to a basic combinator, or an
application of two graphs. We define graphs with the following ML data types,
where a node-id is represented by an ML reference, i.e., a location in memory:

datatype atom = I | K | S
datatype node = C of atom | A of graph × graph
withtype graph = node ref

In order to reduce the right branch of a graph, we need to store informa-
tion such that the state can be reestablished after completing the reduction of
the branch. We cannot recursively unwind on the right branch, as Turner does
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(∗ unwind RM : graph × s t a c k → graph ∗)
fun unwindRM (g as ref (A (g0, g1)), gs)

= unwindRM (g0, PUSH (g, gs))
| unwindRM (g as ref (C a), gs)
= applyRM (a, g, gs)

(∗ a p p l y RM : atom × graph × s t a c k → graph ∗)
and applyRM (_, g, EMPTY)

= g
| applyRM (I, _, PUSH (r as ref (A (_, x)), gs))
= (r := !x;

unwindRM (r, gs))
| applyRM (K, _, PUSH ( ref (A (_, x)),

PUSH (r as ref (A (g0, y as g1)),
gs)))

= (g0 := C I;
g1 := !x;
r := !x;
unwindRM (r, gs))

| applyRM (S, _, PUSH ( ref (A (_, x)),
PUSH ( ref (A (_, y)),
PUSH (r as ref (A (g0, z as g1)),
gs))))

= (g0 := A (ref (!x), ref (!z));
g1 := A (ref (!y), ref (!z));
unwindRM (r, gs))

| applyRM (a, _, PUSH (g as ref (A (_, g1)), gs))
= unwindRM (g1, MARK (a, g, gs))

| applyRM (_, _, MARK (a, g, gs))
= applyRM (a, g, gs)

(∗ n o r m a l i z e RM : graph → graph ∗)
fun normalizeRM g

= unwindRM (g, EMPTY)

FIGURE 1.1. Reduction machine for S, K and I à la Turner

for functions with strict arguments, since such a call would violate the nature of a
transition system as traditionally used to specify an abstract machine. Instead, we
mark the ancestor stack and when completing reduction on the right branch we
pop the mark and reestablish the active atom. By marking the stack, we separate
the arguments of each function application. More on the various techniques for
managing the spine stack can be found in Peyton Jones’s treatise [34]. Our stack
scheme gives rise to the following data type:

datatype stack
= EMPTY
| PUSH of graph × stack
| MARK of atom × graph × stack

Figure 1.1 displays the entire reduction machine as a state transition system
with two functions unwindRM and applyRM that implement the operations de-
scribed in Section 1.1.2. One issue arises when reducing K. The machine cannot
replace the top most application node with the already existing graph given by x.
Instead, following Turner [38, p. 43], an indirection node is installed in the form
of an application of I to x and the machine proceeds to rewire the top of stack to
point at x.
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1.3 GRAPH REWRITING

In this section, we develop an implementation that is faithful to the graph rewriting
system à la Barendregt as described in Section 1.1.1. We do so by investigating
each of the required steps in turn, making explicit the algorithms and data struc-
tures involved following the style and terminology of Danvy et al. [12, 13].

We start by reusing the type of graphs from the previous section. For any
instance of type graph, we can construct unique maps for

lab : graph→ F

succ : graph ⇀ graph×graph

and ML references aptly account for a set of unique node identifiers. Thus, the
implementation faithfully accounts for a graph.

Decomposition. We must consider how to find and represent a redex. To find
a redex we need a method of traversing the graph. While traversing, we must
maintain the graph structure relative to our current position in order to check for
a matching rule. This is naturally done, in a functional style, with a zipper [22]
using the following type of context:
datatype context

= CTX_MT
| CTX_L of graph × graph × context (∗ i d × r i g h t × c o n t e x t ∗)
| CTX_R of graph × graph × atom × context (∗ i d × l e f t × atom × c o n t e x t ∗)

Here, CTX_L marks a traversal on a left branch, where we store the right branch
along with the current node-id. Likewise, we store the left branch and node-id
for CTX_R and in addition maintain the current function symbol. This addition is
for purely practical reasons because it allows for a better typing discipline while
decomposing the graph. We could dispense with the function symbol as well
as the left and right branches since they are all accessible through the node-id
reference.

We can implement a leftmost-outermost reduction strategy by a depth-first
search of the graph. The search is implemented by the two mutually recursive
functions: decompose_graph and decompose_context. The first dispatches
on a graph to find the leftmost atom, and the second dispatches on the current
context and atom checking for a matching redex. If the search fails, the graph is
a normal form. If a redex is found, we pair the redex with its context as reflected
in the decomposition data type. A redex is a match of the I-rule, K-rule or S-
rule as described in Section 1.1.1. The rules imply that we must keep track of the
left root, in order to redirect; and also, any node reachable from both the left and
right root (roots inclusive), since such nodes must be shared. In the case of K, we
must keep track of r and x. The entire process is implemented by the following
definitions:

datatype redex
= RED_I of graph × graph (∗ r × x ∗)
| RED_K of graph × graph (∗ r × x ∗)
| RED_S of graph × graph × graph × graph (∗ r × x × y × z ∗)
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datatype decomposition
= NF of graph
| DEC of redex × context

(∗ decompose graph : graph × c o n t e x t → d e c o m p o s i t i o n ∗)
fun decompose_graph (g as ref (A (g0, g1)), c)

= decompose_graph (g0, CTX_L (g, g1, c))
| decompose_graph (g as ref (C a), c)
= decompose_context (c, g, a)

(∗ d e c o m p o s e c o n t e x t : c o n t e x t × graph × atom → d e c o m p o s i t i o n ∗)
and decompose_context (CTX_MT, g, a)

= NF g
| decompose_context (CTX_L (r, x, c), _, I)
= DEC (RED_I (r, x), c)

| decompose_context (CTX_L (_, x, CTX_L (r, y, c)), _, K)
= DEC (RED_K (r, x), c)

| decompose_context (CTX_L (_, x, CTX_L (_, y, CTX_L (r, z, c))), _, S)
= DEC (RED_S (r, x, y, z), c)

| decompose_context (CTX_L (g, g1, c), g0, a)
= decompose_graph (g1, CTX_R (g, g0, a, c))

| decompose_context (CTX_R (g, g0, a, c), g1, _)
= decompose_context (c, g, a)

(∗ decompose : graph → d e c o m p o s i t i o n ∗)
fun decompose g

= decompose_graph (g, CTX_MT)

Note that decompose, which implements the decomposition process over acyclic
graphs, is a pure and total function.

Contraction. Next we implement the rewriting axioms of the system. Recall
that rewriting consisted of three phases: building, redirecting and garbage collec-
tion. We omit the treatment of garbage collection and simply rely on the underly-
ing runtime system of Standard ML to collect unreachable graphs. For redirecting
nodes we use two auxiliary procedures: replace that in-place updates the con-
tents of an application node, and rewire that redirects a single reference. Their
definitions are:

(∗ r e p l a c e : graph × node × node → graph ∗)
fun replace (g as ref (A (g0, g1)), g0’, g1’)

= (g0 := g0’; g1 := g1’; g)

(∗ r e w i r e : graph × node → graph ∗)
fun rewire (g, x)

= (g := x; g)

For a K-redex, we have nothing to build and proceed to redirect all references
of the root of K, named r, to references of x. As noted in Section 1.2, the root
of K is an application node and we cannot simply overwrite it by x. Instead we
replace it with an indirection node and only rewire the immediate reference to
the root. For an S-redex, we construct nodes for the parts not shared between the
left and right root of the rewrite rule and then replace the root application with the
newly constructed nodes. The rewriting axioms are implemented by the following
definition:
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(∗ c o n t r a c t : r e d e x → graph ∗)
fun contract (RED_I (r, ref x))

= rewire (r, x)
| contract (RED_K (r, ref x))
= rewire (replace (r, C I, x), x)

| contract (RED_S (r, ref x, ref y, ref z))
= replace (r, A (ref x, ref z), A (ref y, ref z))

Note that contract, which implements the rewriting axioms, is an impure and
total function: impure since effects are used for in-place rewriting and total since
contraction is defined on all redexes and as such does not give rise to stuck graphs.

Recomposition. After decomposing a graph and contracting the redex, we need
to recreate the graph. Since contraction actually modifies the graph in place, re-
composing is simply finding the root of the graph:

(∗ recompose : c o n t e x t × graph → graph ∗)
fun recompose (CTX_MT, t)

= t
| recompose (CTX_L (g, g1, c), g0)
= recompose (c, g)

| recompose (CTX_R (g, g0, a, c), g1)
= recompose (c, g)

Note that recompose, which implements the recomposition process, is a pure
and total function.

One-step reduction. We implement one-step reduction as the process of decom-
posing, contracting and recomposing:

(∗ r ed uc e : graph → graph ∗)
fun reduce g

= (case decompose g
of NF g’
⇒ g’

| DEC (red, c)
⇒ recompose (c, contract red))

Normalization. We implement normalization as the iteration of one-step reduc-
tion. Since it is built on normal-order reduction, this iteration is known to termi-
nate with a normal form should one exist. This result generalizes to the setting
of graphs since normal-order reduction in combinatory logic is hypernormaliz-
ing [4]. Normalization is implemented by the following definitions:

(∗ i t e r a t e 0 : d e c o m p o s i t i o n → graph ∗)
fun iterate0 (NF g)

= g
| iterate0 (DEC (g, c))
= iterate0 (decompose (recompose (c, contract g)))

(∗ n o r m a l i z e 0 : graph → graph ∗)
fun normalize0 g

= iterate0 (decompose g)

This concludes our implementation of the graph rewriting system. For each
step, we have done no more then make explicit the operations that are implicit in
the abstract account – remaining faithful to the calculus à la Barendregt.
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(∗ r e f o c u s 1 : graph × c o n t e x t → d e c o m p o s i t i o n ∗)
fun refocus1 (g, c)

= decompose_graph (g, c)

(∗ i t e r a t e 1 : d e c o m p o s i t i o n → graph ∗)
fun iterate1 (NF g)

= g
| iterate1 (DEC (g, c))
= iterate1 (refocus1 (contract g, c))

(∗ n o r m a l i z e 1 : graph → graph ∗)
fun normalize1 g

= iterate1 (refocus1 (g, CTX_MT))

FIGURE 1.2. Small-step abstract machine obtained by refocusing

1.4 CONNECTING GRAPH REWRITING AND GRAPH REDUCTION

With the graph rewriting system of Section 1.3 as our starting point, we succes-
sively submit it to the program transformations of Biernacka and Danvy’s syn-
tactic correspondence [6, 7] lifted to the level of graphs. For an overview of the
program transformations we refer to the work of Danvy et al. [12, 13].

Refocusing. Our first step is to refocus the reduction-based normalization from
the previous section. Refocusing avoids repeated decomposition and recomposi-
tion, in effect deforesting the intermediate results. The result is a reduction-free
normalization function that directly finds the next redex without first navigating
to the top of the graph.
·

· ·

·
decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt · ·

·

·

decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt

decompose

$$JJJJJJJJJJ

refocus
//_________

refocus
//_________

As mentioned in the previous section, recomposition and decomposition are
pure and total functions and thus their composition is pure and total as well. In
particular, so is their deforested composition: side effects are only used for the
formal rewriting axioms of the system and are confined to contract. The defor-
ested composition we choose is the optimal one due to Danvy and Nielsen [19],
which simply consists in continuing the decomposition at the contraction site. The
result is an abstract machine iterating contraction and refocusing. More precisely,
as displayed in Figure 1.2, it is a small-step abstract machine with refocus1
(which is pure) and then contract (which is impure) as the transition function
and a ‘driver loop’, iterate1.

Contraction unfolding. We then unfold contract into iterate1 resulting in
iterate2, which case discriminates on the redex of a decomposition with one
case per contraction rule:
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(∗ i t e r a t e 2 : d e c o m p o s i t i o n → graph ∗)
fun iterate2 (NF g)

= g
| iterate2 (DEC (RED_I (r, ref x), c))
= iterate2 (refocus2 (rewire (r, x), c))

| iterate2 (DEC (RED_K (r, ref x), c))
= iterate2 (refocus2 (rewire (replace (r, C I, x), x), c))

| iterate2 (DEC (RED_S (r, ref x, ref y, ref z), c))
= iterate2 (refocus2 (replace (r, A (ref x, ref z),

A (ref y, ref z)), c))

Lightweight fusion. By lightweight fusion [15,31] of iterate2 and refocus2
(as defined by decompose_graph and decompose_context) we transform the
small-step abstract machine into a big-step abstract machine in the sense that
iterate3, refocus_graph3, and refocus_context3 have become transition
functions as shown in Figure 1.3. Here refocus_graph3 is the composition of
iterate2 and decompose_graph, while refocus_context3 is the composi-
tion of iterate2 and decompose_context that directly calls iterate3 instead
of returning to the caller.

Compression of corridor transitions. We proceed to compress the corridor tran-
sitions, meaning we inline any call with a uniquely known target. For example,
the call iterate3(NF g) is known to be handled by the first case in iterate3
and we therefore replace it with g. Completing this process we obtain the code in
Figure 1.4 where the iteration process has been completely inlined.

Notice how similar the machine of 1.4 is to the reduction machine of Sec-
tion 1.2. The two are in fact the same where refocus_graph4 is replaced by
unwindRM; refocus_context4 is replaced by applyRM with permuted argu-
ments; the type context is replaced by stack with an extra (and unneeded)
graph component in CTX_L and CTX_R; and the definitions of replace and
rewire have been inlined.

Thus, we have directly derived Turner’s reduction machine from an implemen-
tation of Barendregt et al.’s graph rewriting system, using a series of simple and
mechanical program transformations. This derivation is significant in two ways:
(1) it connects Turner’s reduction machine and Barendregt et al.’s graph rewrit-
ing system, which is new; and (2) it shows that Biernacka and Danvy’s syntactic
correspondence scales to term graph rewriting, which is also new.

1.5 TOWARDS GRAPH EVALUATION

In this section, we briefly investigate whether Reynolds’s functional correspon-
dence [1], which further connects abstract machines and evaluators for terms, can
supply an evaluational counterpart for reduction machines.

The reduction machine of Section 1.2 is not in defunctionalized form [18].
However, we can obtain a reduction machine that is in defunctionalized form by
using an alternative but equivalent stack scheme:
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(∗ r e f o c u s g r a p h 3 : graph × c o n t e x t → graph ∗)
fun refocus_graph3 (g as ref (A (g0, g1)), c)

= refocus_graph3 (g0, CTX_L (g, g1, c))
| refocus_graph3 (g as ref (C a), c)
= refocus_context3 (c, g, a)

(∗ r e f o c u s c o n t e x t 3 : c o n t e x t × graph × atom → graph ∗)
and refocus_context3 (CTX_MT, g, a)

= iterate3 (NF g)
| refocus_context3 (CTX_L (r, x, c), _, I)
= iterate3 (DEC (RED_I (r, x), c))

| refocus_context3 (CTX_L (_, x, CTX_L (r, y, c)), _, K)
= iterate3 (DEC (RED_K (r, x), c))

| refocus_context3 (CTX_L (_, x, CTX_L (_, y, CTX_L (r, z, c))), _, S)
= iterate3 (DEC (RED_S (r, x, y, z), c))

| refocus_context3 (CTX_L (g, g1, c), g0, a)
= refocus_graph3 (g1, CTX_R (g, g0, a, c))

| refocus_context3 (CTX_R (g, g0, a, c), g1, _)
= refocus_context3 (c, g, a)

(∗ i t e r a t e 3 : d e c o m p o s i t i o n → graph ∗)
and iterate3 (NF g)

= g
| iterate3 (DEC (RED_I (r, ref x), c))

= refocus_graph3 (rewire (r, x), c)
| iterate3 (DEC (RED_K (r, ref x), c))

= refocus_graph3 (rewire (replace (r, C I, x), x), c)
| iterate3 (DEC (RED_S (r, ref x, ref y, ref z), c))

= refocus_graph3 (replace (r, A (ref x, ref z),
A (ref y, ref z)), c)

(∗ n o r m a l i z e 3 : graph → graph ∗)
fun normalize3 g

= refocus_graph3 (g, CTX_MT)

FIGURE 1.3. Big-step abstract machine obtained by lightweight fusion

(∗ r e f o c u s g r a p h 4 : graph × c o n t e x t → graph ∗)
fun refocus_graph4 (g as ref (A (g0, g1)), c)

= refocus_graph4 (g0, CTX_L (g, g1, c))
| refocus_graph4 (g as ref (C a), c)
= refocus_context4 (c, g, a)

(∗ r e f o c u s c o n t e x t 4 : c o n t e x t × graph × atom → graph ∗)
and refocus_context4 (CTX_MT, g, a)

= g
| refocus_context4 (CTX_L (r, ref x, c), _, I)
= refocus_graph4 (rewire (r, x), c)

| refocus_context4 (CTX_L (_, ref x, CTX_L (r, y, c)), _, K)
= refocus_graph4 (rewire (replace (r, C I, x), x), c)

| refocus_context4 (CTX_L (_, ref x,
CTX_L (_, ref y,
CTX_L (r, ref z, c))), _, S)

= refocus_graph4 (replace (r, A (ref x, ref z),
A (ref y, ref z)), c)

| refocus_context4 (CTX_L (g, g1, c), g0, a)
= refocus_graph4 (g1, CTX_R (g, g0, a, c))

| refocus_context4 (CTX_R (g, g0, a, c), g1, _)
= refocus_context4 (c, g, a)

(∗ n o r m a l i z e 4 : graph → graph ∗)
fun normalize4 g

= refocus_graph4 (g, CTX_MT)

FIGURE 1.4. Reduction machine obtained by transition compression



12 CHAPTER 1. GRAPH REWRITING, REDUCTION & EVALUATION

datatype stack_context
= INIT of graph
| FRAME of stack × atom × stack_context

withtype stack = graph list

This reduction machine, shown in Figure 1.5, uses stack frames to manage right
branches in the graph. A frame simply wraps the former parameters of applyRM ,
and unwindRM constructs the frame prior to application.

Now the type stack_context together with the function applyDF is the
first-order implementation of a higher-order function. Refunctionalizing [17] this
machine gives an evaluator in continuation-passing style where all continuations
are used in a linear fashion. The direct-style counterpart of this evaluator is shown
in Figure 1.6. This evaluator handles right branching by recursively unwinding on
the right hanging node, akin to Turner’s original reduction machine. The evaluator
also bears considerable resemblance to the graph reducer of Okasaki et al. [32],
except they consider the Spineless G-machine [9], and they therefore have a treat-
ment of closures and assignment that is unlike that of our evaluator. In short,
this preliminary investigation suggests that Reynolds’s functional correspondence
scales to connecting graph reduction and graph evaluation.

1.6 CONCLUSION AND PERSPECTIVES

We have presented the first mechanical inter-derivation of graph rewriting, graph
reduction, and graph evaluation. Based on the restrictive use of side effects, this
derivation adapts Biernacka and Danvy’s syntactic correspondence to the setting
of graphs as opposed to terms. In so doing, we have connected the graph rewriting
systems of Barendregt et al. to the reduction machines of Turner.

We have considered the simplest possible setting: combinatory logic with just
the basic combinators S, K and I. However, in our experience, the methods scale
to more involved settings. It is our experience that different rewriting systems lead
to different variants of reduction machines. Furthermore, the methods provide the
possibility of incrementally refining either of the semantic artifacts such that the
refinements are reflected constructively in the derived semantic counterparts.

Future work would expand on the notions of graph rewriting, graph reduction,
and graph evaluation as has already been successful for terms. We have sketched
one such possibility in one treatment of graph evaluation. With this work, the
many reduction machines could be connected to their foundational counterparts
for better comparison and reasoning. We are also interested in the issue of factor-
ing abstract graph machines into compilers and virtual graph machines. All of the
above is being investigated in the author’s forthcoming thesis [40].

Acknowledgments. Thanks to Olivier Danvy for his supervision and for his
course on functional programming at Aarhus University from which this work
originates. I am also grateful to Dennis Decker Jensen and the anonymous re-
viewers for their comments.
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(∗ unwind DF : graph × s t a c k × s t a c k c o n t e x t → graph ∗)
fun unwindDF (g as ref (A (g0, g1)), gs, c)

= unwindDF (g0, g :: gs, c)
| unwindDF (ref (C a), gs, c)
= applyDF (FRAME (gs, a, c))

(∗ a p p l y DF : s t a c k c o n t e x t → graph ∗)
and applyDF (INIT g) = g

| applyDF (FRAME (gs, a, c))
= (case (a, gs)

of (I, (r as ref (A (_, x))) :: gs)
⇒ (r := !x;

unwindDF (r, gs, c))
| (K, ref (A (_, x)) ::

(r as ref (A (g0, y as g1))) :: gs)
⇒ (g0 := C I; g1 := !x; r := !x;

unwindDF (r, gs, c))
| (S, ref (A (_, x)) ::

ref (A (_, y)) ::
(r as ref (A (g0, z as g1))) :: gs)

⇒ (g0 := A (ref (!x), ref (!z));
g1 := A (ref (!y), ref (!z));
unwindDF (r, gs, c))

| (_, (ref (A (_, g1))) :: gs)
⇒ unwindDF (g1, [], FRAME (gs, a, c))

| (_, [])
⇒ applyDF c)

(∗ n o r m a l i z e DF : graph → graph ∗)
fun normalizeDF g

= unwindDF (g, [], INIT g)

FIGURE 1.5. Reduction machine in defunctionalized form

(∗ unwind GE : graph × s t a c k → graph ∗)
fun unwindGE (g as ref (A (g0, g1)), gs)

= unwindGE (g0, g :: gs)
| unwindGE (ref (C a), gs)
= let fun applyGE gs

= (case (a, gs)
of (I, (r as ref (A (_, x))) :: gs)
⇒ (r := !x;

unwindGE (r, gs))
| (K, ref (A (_, x)) ::

(r as ref (A (g0, y as g1))) :: gs)
⇒ (g0 := C I; g1 := !x; r := !x;

unwindGE (r, gs))
| (S, ref (A (_, x)) ::

ref (A (_, y)) ::
(r as ref (A (g0, z as g1))) :: gs)

⇒ (g0 := A (ref (!x), ref (!z));
g1 := A (ref (!y), ref (!z));
unwindGE (r, gs))

| (_, (ref (A (_, g1))) :: gs)
⇒ (unwindGE (g1, []); applyGE gs)

| (_, [])
⇒ ())

in applyGE gs
end

(∗ n o r m a l i z e GE : graph → graph ∗)
fun normalizeGE g

= (unwindGE (g, []); g)

FIGURE 1.6. Graph evaluator in direct style
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