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Graph reduction

What? Represent terms as graphs instead of trees
Why? Avoid redundant computation
How? Two main approaches to graph reduction

Reduction machines à la Turner
Graph rewriting systems à la Barendregt et al.
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This talk

Goal: Connecting reduction machines à la Turner
with graph rewriting systems à la Barendregt.

Means: Mechanical program derivation based on
Danvy’s AFP 2008 presentation.
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The syntactic correspondence

Danvy and students:
calculi oo syntactic

correspondence
// abstract machines

a.o. λ-calculus oo // CK
a.o. λρ̂-calculus oo // CEK
n.o. λρ̂-calculus oo // KAM

oo // SECD
oo // CAM

λsec-calculus oo //

σ-calculus oo //
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What about graph reduction?

Graph rewriting systems

��

program transformation?

OO

Reduction machines

Key issues
Side effects
Modification of executing code
Non-functional formalizations
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Domain of discourse
The simplest setting: the S, K and I combinators

Sxyz = xz(yz)
Kxy = x

Ix = x

No loss of generality

Formalization of graphs with Standard ML references
datatype atom = S | K | I
datatype node = C of atom

| A of graph × graph
withtype graph = node ref

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 6 / 33



Introduction Formalization Derivation Conclusion

Domain of discourse
The simplest setting: the S, K and I combinators

Sxyz = xz(yz)
Kxy = x

Ix = x

No loss of generality

Formalization of graphs with Standard ML references
datatype atom = S | K | I
datatype node = C of atom

| A of graph × graph
withtype graph = node ref

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 6 / 33



Introduction Formalization Derivation Conclusion

Overview

Formalization of a reduction machine
Formalization of a graph rewriting system
Derivation
Towards graph evaluation
Conclusion
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Reduction machines à la Turner

Set of combinators and primitive operations
Stack unwinding routine
Application routine by graph transformation
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Our reduction machine for S, K and I

Restricted to only S, K and I
Full normal form reduction
Stack management by stack marking
Transition functions unwind and apply

Fits on a single slide
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Our reduction machine for S, K and I
(* unwind RM : graph × stack → graph *)
fun unwind RM (g as ref (A (g0 , g1)), gs)

= unwind RM (g0 , PUSH (g, gs ))
| unwind RM (g as ref (C a), gs)

= apply RM (a, g, gs)

(* apply RM : atom × graph × stack → graph *)
and apply RM (_, g, EMPTY )

= g
| apply RM (I, _, PUSH (r as ref (A (_, x)), gs ))

= (r := !x;
unwind RM (r, gs ))

| apply RM (K, _, PUSH ( ref (A (_, x)),
PUSH (r as ref (A (g0 , y as g1)),

gs )))
= (g0 := C I;

g1 := !x;
r := !x;
unwind RM (r, gs ))

| apply RM (S, _, PUSH ( ref (A (_, x)),
PUSH ( ref (A (_, y)),

PUSH (r as ref (A (g0 , z as g1)),
gs ))))

= (g0 := A (ref (!x), ref (!z));
g1 := A (ref (!y), ref (!z));
unwind RM (r, gs ))

| apply RM (a, _, PUSH (g as ref (A (_, g1)), gs ))
= unwind RM (g1 , MARK (a, g, gs ))

| apply RM (_, _, MARK (a, g, gs ))
= apply RM (a, g, gs)
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Graph rewriting systems à la Barendregt

Graph: N , F , N → F , N ⇀ N × N
Rewrite rules
Reduction strategy
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Rewriting

Rewriting à la Barendregt
Extensional
Rewiring is induced by the formalism

Rewriting à la Plasmeĳer
Intensional
Rewiring is a computational axiom
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Rewriting

Rewrite rules for I, K and S à la Barendregt

〈 r : A(I, x), r , x 〉
〈 r : A(A(K, x), y), r , x 〉
〈 r : A(A(A(S, x), y), z) + r ′ : A(A(x , z),A(y, z)), r , r ′ 〉

Rewrite rules I, K and S à la Plasmeĳer
r : AIx → r := x

∣∣∣∣∣∣∣∣∣∣
r : Asy → r := x
s : Acx
c : K

∣∣∣∣∣∣∣∣∣∣
r : Asz → u : Axz
s : Aty v : Ayz
t : Acx w : Auv
c : S r := w

u, v,w are fresh
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Rewriting

Computational axioms for rewiring
(* replace : graph × node × node → graph *)
fun replace (g as ref (A (g0 , g1)), g0 ’, g1 ’)

= (g0 := g0 ’; g1 := g1 ’; g)

(* rewire : graph × node → graph *)
fun rewire (g, x)

= (g := x; g)
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Rewriting

Formalization of rewriting in Standard ML
datatype redex

= RED_I of graph × graph
| RED_K of graph × graph
| RED_S of graph × graph × graph × graph

(* contract : redex → graph *)
fun contract (RED_I (r, ref x))

= rewire (r, x)
| contract (RED_K (r, ref x))

= rewire ( replace (r, C I, x), x)
| contract (RED_S (r, ref x, ref y, ref z))

= replace (r, A (ref x, ref z), A (ref y, ref z))
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The rest of the story
Remaining operations: the reduction strategy

Finding the next redex
(decomposition)
Rewriting the redex
(contraction)
Reconstructing the resulting graph
(recomposition)
Repeating if the result is not a normal form
(iteration)

Usually left implicit
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Decomposition and recomposition

datatype decomposition
= NF of graph
| DEC of redex × context

(* decompose : graph → decomposition *)
fun decompose g = ...

(* recompose : graph × context → graph *)
fun recompose (g, c) = ...
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One-step reduction

·

· ·

·decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt

(* reduce : graph → graph *)
fun reduce g

= (case decompose g
of NF g’
⇒ g’

| DEC (red , c)
⇒ recompose (c, contract red ))
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Reduction-based normalization

·

· ·

·decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt · ·

·

·
decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt

decompose

$$JJJJJJJJJJ

(* iterate : decomposition → graph *)
fun iterate (NF g)

= g
| iterate (DEC (g, c))

= iterate ( decompose ( recompose (c, contract g)))

(* normalize : graph → graph *)
fun normalize g

= iterate ( decompose g)
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This work

Key observation
Side effects are restricted to axioms
Navigation is without pointer swapping

Consequence
Driving machinery is functional
Amenable to the syntactic correspondence
starting with refocusing
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Refocusing

·

· ·

·decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt · ·

·

·
decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt

decompose

$$JJJJJJJJJJ

refocus
//_________

refocus
//_________
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Derivation steps

Graph rewriting system

·

·

·

Abstract machine

Danvy and Nielsen’s refocusing
��

inlining
��

Ohori and Sasano’s lightweight fusion
��

transition compression
��

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 24 / 33



Introduction Formalization Derivation Conclusion

Result: an abstract machine

This abstract machine
coincides

with Turner’s reduction machine.
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Rewriting system to reduction machine

Summary
Side effects are restricted to axioms
Driving machinery is functional
Syntactic correspondence applies
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Towards graph evaluation

Background: Reynolds’s functional correspondence.

Evaluator

·

·

Abstract machine

closure conversion
��

CPS transformation
��

defunctionalization
��
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The functional correspondence

Danvy and students:
abstract machines oo functional

correspondence
// evaluators

CEK oo //

KAM oo //

SECD oo //

oo // monadic evaluator
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Towards graph evaluation

To defunctionalized form:
stack marking to list of stack frames
Refunctionalization
Direct-style transformation
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Towards graph evaluation

Result:
A graph evaluator
Resembles the one of Okasaki, Lee and Tarditi
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Conclusion
Danvy et al.’s syntactic correspondence

terms // graphs

Barendregt et al. and Turner’s graph reduction

graph rewriting oo // reduction machines

Reynolds’s functional correspondence

reduction machines oo // graph evaluators

Thank you
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