
Introduction Formalization Derivation Conclusion

On Graph Rewriting,
Reduction

and Evaluation

Ian Zerny

Department of Computer Science, Aarhus University, Denmark
zerny@cs.au.dk

Trends in Functional Programming, 2009

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 1 / 33

Introduction Formalization Derivation Conclusion

Graph reduction

What? Represent terms as graphs instead of trees
Why? Avoid redundant computation
How? Two main approaches to graph reduction

Reduction machines à la Turner
Graph rewriting systems à la Barendregt et al.

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 2 / 33

Introduction Formalization Derivation Conclusion

This talk

Goal: Connecting reduction machines à la Turner
with graph rewriting systems à la Barendregt.

Means: Mechanical program derivation based on
Danvy’s AFP 2008 presentation.

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 3 / 33

Introduction Formalization Derivation Conclusion

The syntactic correspondence

Danvy and students:
calculi oo syntactic

correspondence
// abstract machines

a.o. λ-calculus oo // CK
a.o. λρ̂-calculus oo // CEK
n.o. λρ̂-calculus oo // KAM

oo // SECD
oo // CAM

λsec-calculus oo //

σ-calculus oo //

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 4 / 33

Introduction Formalization Derivation Conclusion

The syntactic correspondence

Danvy and students:
calculi oo syntactic

correspondence
// abstract machines

a.o. λ-calculus oo // CK
a.o. λρ̂-calculus oo // CEK
n.o. λρ̂-calculus oo // KAM

oo // SECD
oo // CAM

λsec-calculus oo //

σ-calculus oo //

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 4 / 33

Introduction Formalization Derivation Conclusion

The syntactic correspondence

Danvy and students:
calculi oo syntactic

correspondence
// abstract machines

a.o. λ-calculus oo // CK
a.o. λρ̂-calculus oo // CEK
n.o. λρ̂-calculus oo // KAM

oo // SECD
oo // CAM

λsec-calculus oo //

σ-calculus oo //

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 4 / 33

Introduction Formalization Derivation Conclusion

The syntactic correspondence

Danvy and students:
calculi oo syntactic

correspondence
// abstract machines

a.o. λ-calculus oo // CK
a.o. λρ̂-calculus oo // CEK
n.o. λρ̂-calculus oo // KAM

oo // SECD
oo // CAM

λsec-calculus oo //

σ-calculus oo //

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 4 / 33

Introduction Formalization Derivation Conclusion

What about graph reduction?

Graph rewriting systems

��

program transformation?

OO

Reduction machines

Key issues
Side effects
Modification of executing code
Non-functional formalizations

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 5 / 33

Introduction Formalization Derivation Conclusion

Domain of discourse
The simplest setting: the S, K and I combinators

Sxyz = xz(yz)
Kxy = x

Ix = x

No loss of generality

Formalization of graphs with Standard ML references
datatype atom = S | K | I
datatype node = C of atom

| A of graph × graph
withtype graph = node ref

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 6 / 33

Introduction Formalization Derivation Conclusion

Domain of discourse
The simplest setting: the S, K and I combinators

Sxyz = xz(yz)
Kxy = x

Ix = x

No loss of generality

Formalization of graphs with Standard ML references
datatype atom = S | K | I
datatype node = C of atom

| A of graph × graph
withtype graph = node ref

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 6 / 33

Introduction Formalization Derivation Conclusion

Overview

Formalization of a reduction machine
Formalization of a graph rewriting system
Derivation
Towards graph evaluation
Conclusion

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 7 / 33

Introduction Formalization Derivation Conclusion

Reduction machines à la Turner

Set of combinators and primitive operations
Stack unwinding routine
Application routine by graph transformation

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 8 / 33

Introduction Formalization Derivation Conclusion

Our reduction machine for S, K and I

Restricted to only S, K and I
Full normal form reduction
Stack management by stack marking
Transition functions unwind and apply

Fits on a single slide

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 9 / 33

Introduction Formalization Derivation Conclusion

Our reduction machine for S, K and I
(* unwind RM : graph × stack → graph *)
fun unwind RM (g as ref (A (g0 , g1)), gs)

= unwind RM (g0 , PUSH (g, gs))
| unwind RM (g as ref (C a), gs)

= apply RM (a, g, gs)

(* apply RM : atom × graph × stack → graph *)
and apply RM (_, g, EMPTY)

= g
| apply RM (I, _, PUSH (r as ref (A (_, x)), gs))

= (r := !x;
unwind RM (r, gs))

| apply RM (K, _, PUSH (ref (A (_, x)),
PUSH (r as ref (A (g0 , y as g1)),

gs)))
= (g0 := C I;

g1 := !x;
r := !x;
unwind RM (r, gs))

| apply RM (S, _, PUSH (ref (A (_, x)),
PUSH (ref (A (_, y)),

PUSH (r as ref (A (g0 , z as g1)),
gs))))

= (g0 := A (ref (!x), ref (!z));
g1 := A (ref (!y), ref (!z));
unwind RM (r, gs))

| apply RM (a, _, PUSH (g as ref (A (_, g1)), gs))
= unwind RM (g1 , MARK (a, g, gs))

| apply RM (_, _, MARK (a, g, gs))
= apply RM (a, g, gs)

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 10 / 33

Introduction Formalization Derivation Conclusion

Overview

Formalization of a reduction machine
Formalization of a graph rewriting system
Derivation
Towards graph evaluation
Conclusion

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 11 / 33

Introduction Formalization Derivation Conclusion

Graph rewriting systems à la Barendregt

Graph: N , F , N → F , N ⇀ N × N
Rewrite rules
Reduction strategy

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 12 / 33

Introduction Formalization Derivation Conclusion

Rewriting

Rewriting à la Barendregt
Extensional
Rewiring is induced by the formalism

Rewriting à la Plasmeĳer
Intensional
Rewiring is a computational axiom

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 13 / 33

Introduction Formalization Derivation Conclusion

Rewriting

Rewrite rules for I, K and S à la Barendregt

〈 r : A(I, x), r , x 〉
〈 r : A(A(K, x), y), r , x 〉
〈 r : A(A(A(S, x), y), z) + r ′ : A(A(x , z),A(y, z)), r , r ′ 〉

Rewrite rules I, K and S à la Plasmeĳer
r : AIx → r := x

∣∣∣∣∣∣∣∣∣∣
r : Asy → r := x
s : Acx
c : K

∣∣∣∣∣∣∣∣∣∣
r : Asz → u : Axz
s : Aty v : Ayz
t : Acx w : Auv
c : S r := w

u, v,w are fresh

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 14 / 33

Introduction Formalization Derivation Conclusion

Rewriting

Computational axioms for rewiring
(* replace : graph × node × node → graph *)
fun replace (g as ref (A (g0 , g1)), g0 ’, g1 ’)

= (g0 := g0 ’; g1 := g1 ’; g)

(* rewire : graph × node → graph *)
fun rewire (g, x)

= (g := x; g)

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 15 / 33

Introduction Formalization Derivation Conclusion

Rewriting

Formalization of rewriting in Standard ML
datatype redex

= RED_I of graph × graph
| RED_K of graph × graph
| RED_S of graph × graph × graph × graph

(* contract : redex → graph *)
fun contract (RED_I (r, ref x))

= rewire (r, x)
| contract (RED_K (r, ref x))

= rewire (replace (r, C I, x), x)
| contract (RED_S (r, ref x, ref y, ref z))

= replace (r, A (ref x, ref z), A (ref y, ref z))

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 16 / 33

Introduction Formalization Derivation Conclusion

The rest of the story
Remaining operations: the reduction strategy

Finding the next redex
(decomposition)
Rewriting the redex
(contraction)
Reconstructing the resulting graph
(recomposition)
Repeating if the result is not a normal form
(iteration)

Usually left implicit

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 17 / 33

Introduction Formalization Derivation Conclusion

Decomposition and recomposition

datatype decomposition
= NF of graph
| DEC of redex × context

(* decompose : graph → decomposition *)
fun decompose g = ...

(* recompose : graph × context → graph *)
fun recompose (g, c) = ...

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 18 / 33

Introduction Formalization Derivation Conclusion

One-step reduction

·

· ·

·decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt

(* reduce : graph → graph *)
fun reduce g

= (case decompose g
of NF g’
⇒ g’

| DEC (red , c)
⇒ recompose (c, contract red))

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 19 / 33

Introduction Formalization Derivation Conclusion

Reduction-based normalization

·

· ·

·decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt · ·

·

·
decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt

decompose

$$JJJJJJJJJJ

(* iterate : decomposition → graph *)
fun iterate (NF g)

= g
| iterate (DEC (g, c))

= iterate (decompose (recompose (c, contract g)))

(* normalize : graph → graph *)
fun normalize g

= iterate (decompose g)

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 20 / 33

Introduction Formalization Derivation Conclusion

Overview

Formalization of a reduction machine
Formalization of a graph rewriting system
Derivation
Towards graph evaluation
Conclusion

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 21 / 33

Introduction Formalization Derivation Conclusion

This work

Key observation
Side effects are restricted to axioms
Navigation is without pointer swapping

Consequence
Driving machinery is functional
Amenable to the syntactic correspondence
starting with refocusing

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 22 / 33

Introduction Formalization Derivation Conclusion

This work

Key observation
Side effects are restricted to axioms
Navigation is without pointer swapping

Consequence
Driving machinery is functional
Amenable to the syntactic correspondence
starting with refocusing

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 22 / 33

Introduction Formalization Derivation Conclusion

Refocusing

·

· ·

·decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt · ·

·

·
decompose

$$JJJJJJJJJJ

contract
//

recompose
::tttttttttt

decompose

$$JJJJJJJJJJ

refocus
//_________

refocus
//_________

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 23 / 33

Introduction Formalization Derivation Conclusion

Derivation steps

Graph rewriting system

·

·

·

Abstract machine

Danvy and Nielsen’s refocusing
��

inlining
��

Ohori and Sasano’s lightweight fusion
��

transition compression
��

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 24 / 33

Introduction Formalization Derivation Conclusion

Result: an abstract machine

This abstract machine
coincides

with Turner’s reduction machine.

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 25 / 33

Introduction Formalization Derivation Conclusion

Rewriting system to reduction machine

Summary
Side effects are restricted to axioms
Driving machinery is functional
Syntactic correspondence applies

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 26 / 33

Introduction Formalization Derivation Conclusion

Overview

Formalization of a reduction machine
Formalization of a graph rewriting system
Derivation
Towards graph evaluation
Conclusion

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 27 / 33

Introduction Formalization Derivation Conclusion

Towards graph evaluation

Background: Reynolds’s functional correspondence.

Evaluator

·

·

Abstract machine

closure conversion
��

CPS transformation
��

defunctionalization
��

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 28 / 33

Introduction Formalization Derivation Conclusion

The functional correspondence

Danvy and students:
abstract machines oo functional

correspondence
// evaluators

CEK oo //

KAM oo //

SECD oo //

oo // monadic evaluator

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 29 / 33

Introduction Formalization Derivation Conclusion

Towards graph evaluation

To defunctionalized form:
stack marking to list of stack frames
Refunctionalization
Direct-style transformation

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 30 / 33

Introduction Formalization Derivation Conclusion

Towards graph evaluation

Result:
A graph evaluator
Resembles the one of Okasaki, Lee and Tarditi

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 31 / 33

Introduction Formalization Derivation Conclusion

Overview

Formalization of a reduction machine
Formalization of a graph rewriting system
Derivation
Towards graph evaluation
Conclusion

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 32 / 33

Introduction Formalization Derivation Conclusion

Conclusion
Danvy et al.’s syntactic correspondence

terms // graphs

Barendregt et al. and Turner’s graph reduction

graph rewriting oo // reduction machines

Reynolds’s functional correspondence

reduction machines oo // graph evaluators

Thank you

Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 33 / 33

Introduction Formalization Derivation Conclusion

Conclusion
Danvy et al.’s syntactic correspondence

terms // graphs

Barendregt et al. and Turner’s graph reduction

graph rewriting oo // reduction machines

Reynolds’s functional correspondence

reduction machines oo // graph evaluators

Thank you
Ian Zerny (zerny@cs.au.dk) On Graph Rewriting, Reduction and Evaluation TFP ’09 33 / 33

	Introduction
	Formalization
	Derivation
	Conclusion

