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Abstract

We study the interpretation and inter-derivation of big-step and small-step
specifications. In particular, we consider formal specifications of program-
ming languages, e.g., denotational semantics and operational semantics, and
investigate how these specifications relate to each other. We carry out this
investigation by interpreting specifications as programs in a pure functional
meta-language and by constructively deriving one program from the other us-
ing program transformations. To this end, we use two derivational correspon-
dences: The functional correspondence between compositional higher-order
specifications and first-order transition systems, and the syntactic correspon-
dence between rewriting specifications and first-order transition systems.

The main contribution of this dissertation is threefold: First, we extend these
correspondences to systematically derive small-step reduction semantics and
abstract machines from big-step reduction strategies. Second, we show how
these correspondences can be used to relate specifications for lazy evalua-
tion, e.g., graph reduction and call-by-need evaluation. Third, we describe
an alternative interpretation of specifications as logic programs in a logical
framework, and we give a logical counterpart to the functional correspon-
dence.
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Resumé

Vi studerer fortolkningen og udledelsen af big-step og small-step specifika-
tioner. Især betragter vi formelle specifikationer af programmeringssprog, så-
som denotationel semantik og operationel semantik, og vi undersøger, hvor-
dan disse specifikationer relaterer til hinanden. Denne relation undersøger
vi ved at fortolke specifikationer som programmer i et effektfri funktionel
metasprog og bruger programtransformationer til konstruktivt at udlede et
program fra et andet. Til dette benytter vi to udledningskorrespondancer:
Den funktionelle korrespondance mellem kompositionelle højereordensspeci-
fikationer og transitionssystemer, samt den syntaktiske korrespondance mellem
omskrivningsspecifikationer og transitionssystemer.

Hovedbidraget i denne afhandling er tredelt: Først udvider vi disse korrespon-
dancer med en systematisk udledning af en small-step reduktionssemantik
og en abstrakt maskine fra en big-step reduktionsstrategi. Dernæst viser vi,
hvordan disse korrespondancer kan relatere specifikationer for lazy evaluer-
ing, såsom grafreduktion og call-by-need evaluering. Slutteligt beskriver vi
en alternativ fortolkning af specifikationer som logikprogrammer i et logisk
system, og vi giver en logisk pendant til den funktionelle korrespondance.
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Chapter 1

Introduction

Many different styles of specifications have been developed for programming languages.
They can coarsely be classified in two groups: recursively defined specifications that ascribe
a final result in one big step, and iteratively defined specifications that ascribe intermediate
results in successive small steps.

The thesis defended here is that:

Mechanical transformations can inter-derive small-step and big-step specifications.
This inter-derivation is useful to relate these specifications and to implement them.

In this dissertation, we consider the theory and practice of programming languages as our
central case study. In other words, we consider semantic specifications of programming
languages and implementations of these specifications. In particular, we consider the
denotational and operational methodologies which are the de-facto standards to specify
programming languages. We follow the tradition established by McCarthy [142], Landin
[131, 132], and Reynolds [176] of using pure functional programs simultaneously as both
the specification and the implementation. Our main focus is the treatment of specifications,
not the meta-theory of specifications. Concretely, our developments take place in a com-
putational framework of pure functional programs. Our method of development is to
inter-derive these pure functional programs by mechanical program transformations.

The contribution of this dissertation is threefold:

1. We give a method to systematically derive small-step specifications in the form of
a reduction semantics and an abstract machine from the big-step specification of a
reduction strategy in the form of a compositional search function. This derivation
is correct-by-construction and scales to complex cases including all of the reduction
semantics in Felleisen et al.’s textbook on semantic engineering [89] and to all of
the reduction semantics presented in this dissertation.

2. We give an extensive case study of these derivational techniques on semantic arti-
facts for lazy evaluation in the form of graph reduction and call-by-need evaluation.
This study mechanically exposes the computational structure of lazy evaluation and
it connects a myriad of previously disconnected semantic artifacts. Among others,
we give a constructive connection of Turner’s original reduction machine [209]with
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1. Introduction

Barendregt et al.’s term-graph rewriting [24]; as well as a constructive connection
of Crégut’s original lazy Krivine machine [51] with Ariola et al.’s call-by-need λ-
calculus, and with Launchbury’s natural semantics for call by need.

3. We give a logical interpretation of the inter-derivation techniques where specifica-
tions are defined by logic programs within a substructural logical framework [198].
This logical correspondence provides one possible path in formalizing a meta-theoretic
framework to define and automatically inter-derive specifications.

This dissertation stands on the shoulders of many, most notably, on the shoulders of
those that have jointly developed the inter-derivation techniques with Danvy. In par-
ticular, for their development of the functional correspondence, of the syntactic corre-
spondence, and for their account of these correspondences for a wide range of applica-
tions [4, 26, 31, 119, 143, 144, 151, 153]. It is as a continuation of their work, that this
dissertation extends these correspondences, uses them to account for the theory and prac-
tice of graph reduction and call-by-need evaluation, and describes a logical counterpart.
This continuation is pursued in Section 3.4 and Section 4.6.

The overarching message is that these inter-derivations witness a striking unity of com-
putation across big-step and small-step specifications and their implementations: to quote
Danvy, they all truly define the same elephant, computationally speaking. The structural
coincidence between contexts and continuations, in particular, plays a key rôle to connect
small-step and big-step computation, as first established between reduction strategies and
evaluation orders by Plotkin [170]. The semantic artifacts we derive are correct by con-
struction but what is more, they often match what others have independently crafted by
hand with ingenuity, skill, and independent soundness proofs on a case-by-case basis. The
inter-derivations make it possible to concentrate this ingenuity and skill on other semantic
endeavors [17].

Prerequisites and notations

We assume familiarity with basic set theory, with logical notations, and with the λ-cal-
culus. We also assume familiarity with formal semantics, in particular denotational and
operational semantics as can be gathered in, e.g., Winskel’s introductory textbook [219].

We use a pure fragment1 of core Standard ML [146] extensively throughout this dis-
sertation. However, familiarity with another functional programming language, such as
Haskell, OCaml or Scheme is sufficient to follow our developments. We use Standard ML
because it has a formal semantics and has inductively defined algebraic data types. These
two features make Standard ML a reasonable choice as a meta-language for specifications.
Indeed, ML originated as the Meta Language for LCF .

We attempt to use standard notations in our developments and review some of these
notations below.

Judgments A logical judgment is defined inductively by rules of the form:

J1 · · · Jn

J

1By ‘pure’ we mean that the only computational effect of the language is divergence.
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In such a rule, J is called the conclusion and J1, · · · , Jn are called the premises. An instance
of a judgment form is said to hold if there exists a rule with a matching conclusion for
which each of the premises hold. Instances of a rule with no premises hold uncondition-
ally.

BNF grammars A BNF grammar is used as a short-hand notation for defining a forma-
tion judgment. For example, the BNF grammar of typed λ-expressions is:

Λ 3 e ::= x | λ(x : T ). e | e e

This grammar is short-hand for the formation judgment ‘e ∈ Λ’ of syntactically well-formed
λ-expressions. It is defined inductively by three rules:

x ∈ Λ
e ∈ Λ T ∈ Type

λ(x : T ). e ∈ Λ
e1 ∈ Λ e2 ∈ Λ

e1 e2 ∈ Λ

The first rule states that any variable, x , is a well-formed λ-expression. The second rule
states that for any well-formed λ-expression, e, and well-formed type, T , the λ-abstrac-
tion, λ(x : T ). e, is a well-formedλ-expression. Here we appeal to some suitable formation
judgment for types, T ∈ Type. The third rule states that for any two well-formed λ-
expressions, e1 and e2, the application, e1 e2, is a well-formed λ-expression. We will refer
to the collection of well-formed expressions defined by such a BNF grammar as a syntactic
domain or simply a type.

We let the use of a meta-variable implicitly require that the formation judgment holds,
such as we have done in our use of e in the BNF grammar above. In addition, we use
numeric subscripts and primes to refer to possibly distinct instances of the same formation
judgment, e.g., e1, e2, e′, e′′, etc.

Types In the above, we purposefully mirror the set-theoretic notation for membership
and we liberally use other such notations when appropriate. We let Z denote the mathe-
matical integers and let B denote the two-point lattice with top element T, bottom element
F and the usual binary operations ∧,∨, and ¬. We use e→ e1, e2 to denote the conditional
choice of e1 if e is T and e2 if e is F. We denote the type of total functions by T1→ T2; the
type of partial functions by T1 * T2; the type of products by T1 × T2 with projections fst
and snd; and the type of sums by T1 + T2 with injections inl and inr. We denote the unit
type of products by 1 and the unit type of sums by 0.

On occasions we will make use of the type isomorphism:

(T1 × T2)→ T3 = T1 × T2→ T3
∼= T1→ T2→ T3 = T1→ (T2→ T3)

The transformation from left to right is called currying and the transformation from right
to left is called uncurrying. In addition, function types are right associative and bind more
loosely than all other type constructors, as illustrated by the left-hand equality and right-
hand equality in the above equation.

Contexts In general, a context is an expression with holes. In this dissertation, we con-
sider only contexts with exactly one hole. The grammar of unrestricted one-hole contexts
for the λ-expressions defined above is:

Context 3 C ::= � | λ(x : T ). C | C e | e C
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1. Introduction

In words, a context is either a hole (i.e., it is the empty context); a λ-abstraction with
a one-hole context as its body; a λ-application with a one-hole context in the operator
position; or a λ-application with a one-hole context in the operand position.

The judgment ‘e = C[e′]’ denotes the equality of the expression e with the composition
of a context C and expression e′ where e′ replaces the hole in C . This judgment is used to
denote both the recomposition of a context and an expression to form an expression; and
the decomposition of an expression into a context and an expression. The latter is not, in
general, unique. For example both e1 e2 = (� e2)[e1] and e1 e2 = (e1�)[e2] hold.

Abstract machines The term ‘abstract machine’ has several uses in the literature rang-
ing from simply ‘an executable implementation’ to ‘a particular style of executable im-
plementation’. In this dissertation, we use this term to refer to the implementation of a
state-transition system, i.e., an iterative and first-order representation of atomic transi-
tions, e.g., a finite-state automaton or a push-down automaton.

Overview

This dissertation is structured in two parts. Part I introduces background material used
throughout Part II.

Chapter 2 introduces a simple imperative programming language and shows how to give
it a semantics using denotational and operational specifications. The chapter is concluded
with an implementation of a denotational semantics and an implementation of an opera-
tional semantics in a functional programming language.

Chapter 3 shows how to derive an abstract machine from the implementation of the de-
notational semantics using the functional correspondence.

Chapter 4 shows how to derive an abstract machine from the implementation of the op-
erational semantics using the syntactic correspondence.

Part II consists of seven articles, four of which are based on previously published articles.

Chapter 5 contains the unpublished article A prequel to reduction semantics.

Chapter 6 contains the unpublished article Normalization functions for Boolean proposi-
tional formulas which is an extended version of a conference article [76].

Chapter 7 contains the journal article Storeless call-by-need evaluation which is an ex-
tended version of a conference article [75, 77].

Chapter 8 contains the unpublished article A synthetic operational account of call-by-need
evaluation.

Chapter 9 contains the journal article The inter-derivation of graph rewriting, reduction,
and evaluation which is an extended version of a conference article [222, 223].

Chapter 10 contains the journal article Three syntactic theories for combinatory graph re-
duction which is an extended version of a conference article [73, 74].

Chapter 11 contains the unpublished article A logical correspondence
between abstract machines and natural semantics.
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Chapter 2

The semantics

of programming languages

This chapter introduces the semantic and implementation tools used throughout this dis-
sertation. We exemplify them with the development of several semantics and implemen-
tations for a simple imperative programming language, I . This programming language
is a synthesis of languages from other accounts about the semantics of programming lan-
guages. Indeed, variants of I appear in most standard textbooks on the semantics of
programming languages [148, 154, 178, 186, 201, 206, 219]. Of these, Winskel’s IMP
language [219, Chapter 2] and Reynolds’s simple imperative language [178, Chapter 2]
are the main sources of inspiration for I . Our successive developments of I illustrate
relationships between the semantics of a language and its implementation. In particular,
our developments of I illustrate how to characterize its computational aspects. In other
words, we are interested in the semantic aspects that define not just what is computed but
also how it is computed. The I language is said to be an imperative programming lan-
guage because its computational unit is that of a command (or statement). In particular,
the execution of a command proceeds by affecting the ambient state of the program.

In this chapter, we consider the denotational and operational methodologies for defin-
ing the semantics of a programming language. The semantics, as specified by these
methodologies, together with their implementations, in a functional programming lan-
guage, form the basis on which the rest of this dissertation is carried out. Other method-
ologies exist for specifying the semantics of programming languages, e.g., axiomatic se-
mantics [114], categorical semantics [149], and game semantics [2], to name a few. These
alternatives and variants are not the topic of this dissertation.

Overview We start by defining the abstract syntax of I (Section 2.1). This syntax
serves as a common definition for the subsequent semantics.

We introduce the notion of a denotational semantics (Section 2.2) with a direct seman-
tics for I (Section 2.2.1). We consider several computational aspects of I and how they
are specified or can be specified by the semantics. Based on these considerations, we give
an alternative specification in the form of a continuation semantics (Section 2.2.2).
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2. The semantics of programming languages

Mirroring the same structure as above, we introduce the notion of an operational se-
mantics (Section 2.3) with a big-step semantics for the I language (Section 2.3.1). Again,
we consider the same computational aspects of I and how they are specified or can be
specified by the semantics. Based on these considerations we give two alternative seman-
tics: the first in the form of a small-step semantics (Section 2.3.2); the second in the form
of a reduction semantics (Section 2.3.3).

In conclusion, we discuss the relationship between the denotational and operational
semantics as well as the relationship between a semantics and a functional representation
or implementation of it (Section 2.4). To this end, we give an adequate representation
of the I syntax in Standard ML (Section 2.4.1) together with a functional implementa-
tion of the direct-style semantics (Section 2.4.2), and a functional implementation of the
reduction semantics (Section 2.4.3).

2.1 Syntax

In this section, we define the abstract syntax of our simple imperative programming lan-
guage, I . We do not consider aspects related to the parsing of concrete syntax, and simply
assume that any and all textual treatment has already taken place, e.g., lexing, parsing, or
preprocessing. We define each of the syntactic domains with a BNF-style grammar. A BNF
grammar inductively defines several syntactic domains by a set of formation rules. Any
sentence that can be inductively formed by these rules represents a well-formed sentence
in our language. We do not presently assign any meaning to these sentences. Indeed, the
following sections illustrate how several distinct meanings can be assigned to well-formed
sentences, in effect, defining several distinct programming languages.

When defining the abstract syntax of the language we use an abstract notation for
numerals and locations, i.e., we give no specific rules of formation:

Num 3 n
Loc 3 `

Each numeral is a symbolic representation of a specific element in the set of integers. We
assume our syntactic representation of numerals is isomorphic to Z with respect to the
numerical operations, e.g., addition, subtraction, and multiplication. The reflection of
numerals onto the integers is given by:

N : Num→ Z

Locations represent addresses in an arbitrarily large address space. We require only that
locations can be tested for equality and thus we do not consider features such as allowing
arithmetic operations on locations.

We also use a syntactic representation of the truth values:

Bool 3 b ::= true | false

The syntax of the language is defined by three syntactic domains: arithmetic expres-
sions, boolean expressions, and commands. The rules of formation are given by the fol-
lowing BNF grammar:

AExp 3 A ::= n | ` | A + A | A - A | A * A
BExp 3 B ::= b | A <= A | not B | B and B
Com 3 C ::= skip | C; C | `:= A | if B then C else C | while B do C
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2.2. Denotational semantics

In words, an arithmetic expression is either a number, the dereference of a location, an
addition expression over two arithmetic sub-expressions, a subtraction expression over
two arithmetic sub-expressions, or a multiplication expression over two arithmetic sub-
expressions. A boolean expression is either a syntactic truth value, a less-then-or-equal
expression over two arithmetic sub-expressions, a negation expression over a boolean sub-
expression, or a conjunction expression over two boolean sub-expressions. A command is
either a skip command, a sequencing command over two sub-commands, an assignment
command over a location and an arithmetic sub-expression, an if-then-else command over
a boolean sub-expression and two sub-commands, or a while command over a boolean
sub-expression and a sub-command.

It is worth noting that these syntactic domains are not mutually recursive. Arithmetic
expressions are inductively defined in terms of numerals, locations, and arithmetic ex-
pressions. Boolean expressions are inductively defined in terms of syntactic truth values,
arithmetic expressions, and boolean expressions. Commands are inductively defined in
terms of all of the above as well as commands. Also, the syntax of I precludes type-
incorrect programs, e.g., only arithmetic expressions can appear in the context of a nu-
merical operator.

Syntactic sugar In the interest of brevity, we have tried to limit the size of the lan-
guage. Following Landin [131], we can define derived forms as ‘syntactic sugar’ by trans-
lating them into core forms for which a semantics is given. For example, we might define
numeric equality in terms of numeric ordering and conjunction, or define disjunction in
terms of conjunction and negation:

A1 = A2 is defined as A1 <= A2 and A2 <= A1

B1 or B2 is defined as not ((not B1) and (not B2))

Whether these definitions make sense depends on the semantics of the language. The
first equation requires that numeric values define a partially ordered set, specifically that
antisymmetry holds, and that duplicating sub-expressions cannot change the meaning of
the expression. The second equation requires that the De Morgan laws hold. We will
come back to illustrate how exactly such definitions can cause problems.

2.2 Denotational semantics

In this section, we define two denotational semantics for our simple imperative program-
ming language. The first semantics defines the meaning of a program as its final result in
one big step (Section 2.2.1). The second semantics defines the meaning of a program as
the intermediate result of one small step followed by the successive small steps towards
its final result (Section 2.2.2).

Denotational semantics was designed by Christopher Strachey and Dana Scott as a for-
mal method for specifying and developing the semantics of programming languages [190]
and it has become a standard methodology [101, 105, 178, 186, 201, 207, 219]. A denota-
tional semantics defines the meaning of an expression by associating it with a denotation:
a well-defined mathematical object that denotes this meaning. The hallmark of a denota-
tional semantics is that this association is defined compositionally, i.e., the denotation of
an expression is defined in terms of the denotations of its sub-expressions. As a corollary
of compositionality, the meaning of an expression is invariant when replacing any of its
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sub-expressions by an equivalent sub-expression, i.e., one with the same denotation. In
other words, the meaning, or denotation, of an expression does not depend on the con-
text of the expression. This property is sometimes referred to as referential transparency
and it enables compositional reasoning directly upon the expressions that comprise the
language.

2.2.1 A direct semantics

We start by defining a direct semantics for a simple interpretation of I . The semantics
is said to be direct because most of the syntactic constructs are given meaning directly
in terms of their associated mathematical meanings. The qualification of a denotational
semantics as being in direct style is often used to contrast it with other styles, e.g., contin-
uation style [202] which we cover in Section 2.2.2, or monadic style [149] which we do
not consider here.

To define the denotational semantics, we use the usual notations for λ-expressions.
Meta-level abstraction is given by λ and meta-level application by juxtaposition. Other
meta-level operations use their usual mathematical notations rendered in math font, e.g.,
+, −, and × denote meta-level addition, subtraction, and multiplication on the integers.

Before we define the denotations of expressions, we must define the meaning of the
ambient state of a program. Here we use a total function from locations to the integers:

Σ= (Loc→ Z) 3 σ

Thus the state is defined for any location without initialization, i.e., all locations exist
and hold valid content. An initial state could thus be the constant function mapping all
locations to zero:

Σ 3 init= λ(` : Loc). 0

Given the meaning of states, we define the denotations of arithmetic expressions to be
total functions from states to the integers:

A : AExp→ (Σ→ Z)
A ¹nº = λ(σ : Σ).N (n)
A ¹`º = λ(σ : Σ).σ(`)

A ¹A1 + A2º = λ(σ : Σ). (A ¹A1ºσ) + (A ¹A2ºσ)
A ¹A1 - A2º = λ(σ : Σ). (A ¹A1ºσ)− (A ¹A2ºσ)
A ¹A1 * A2º = λ(σ : Σ). (A ¹A1ºσ)× (A ¹A2ºσ)

In words, the meaning of each syntactic construct is compositionally defined in terms of
the mathematical meaning associated to the construct together with the meaning of its
constituents: The meaning of a numeral in a given state is simply the integer it represents.
The meaning of a location in a given state is the contents of that location in that state. The
meaning of an addition in a given state is the mathematical meaning of addition as applied
to the meaning of the sub-expressions in the same state. The meaning of a subtraction in
a given state is the mathematical meaning of subtraction as applied to the meaning of the
sub-expressions in the same state. The meaning of a multiplication in a given state is the
mathematical meaning of multiplication as applied to the meaning of the sub-expressions
in the same state.
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Given the meaning of arithmetic expressions, we define the denotations of boolean
expressions to be total functions from states to the truth values:

B : BExp→ (Σ→ B)
B¹trueº = λ(σ : Σ). T
B¹falseº = λ(σ : Σ). F

B¹A1 <= A2º = λ(σ : Σ). (A ¹A1ºσ)≤ (A ¹A2ºσ)
B¹not Bº = λ(σ : Σ).¬(B¹Bºσ)

B¹B1 and B2º = λ(σ : Σ). (B¹B1ºσ)∧ (B¹B2ºσ)

Again, as described in detail for arithmetic expressions, the meaning of each syntactic
construct is defined in terms of the mathematical meaning associated to that construct
together with the meaning of its constituents. This direct meaning definition is even more
transparent for boolean expressions because the state is never used explicitly, it is just
passed along.

Given the meaning of arithmetic expressions and boolean expressions, we define the
denotations of commands to be partial functions from states to states, i.e., state transfor-
mations:

C : Com→ (Σ* Σ)
C ¹skipº = λ(σ : Σ).σ

C ¹C1; C2º = λ(σ : Σ).C ¹C2º (C ¹C1ºσ)
C ¹`:= Aº = λ(σ : Σ).λ(`′ : Loc).`= `′→A ¹Aºσ, σ(`′)

C ¹if B then C1 else C2º = λ(σ : Σ).B¹Bºσ→C ¹C1ºσ, C ¹C2ºσ
C ¹while B do Cº = lfp(λ( f : Σ* Σ).λ(σ : Σ).B¹Bºσ→ f (C ¹Cºσ), σ)

In words: The meaning of skip is the identity transformation on states, i.e., it does not
affect the state. The meaning of a sequence command is the composition of the meaning
of its sub-commands. The meaning of an assignment is the functional update of a state to
map the assigned-to location to the meaning of the arithmetic expression. The meaning
of an if command in a particular state is the conditional choice of one of its two sub-
commands in the same state depending on the meaning of its predicate. The meaning
of a while command is the least fixed point of the function that, if the meaning of its
predicate is true, applies its argument (which by means of the fixed point represents the
function itself) to the meaning of its sub-command.

We define the full evaluation of a program by applying the denotation of the program
to the initial state:

E : Com* Σ

E¹Cº = C ¹Cº(init)

This definition of a direct semantics concludes our first denotational semantics for I .
Having defined a semantics for I , we can check to see if our ‘syntax sugar’ definitions are
justified. Consider the boolean expression to check equality of two arithmetic expressions,
A1 = A2, which desugared to, A1 <= A2 and A2 <= A1. If we were to define its denotation
directly it would be:

B¹A1 = A2º = λ(σ : Σ). (A ¹A1ºσ =A ¹A2ºσ)
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We expect the denotation of its desugaring to be the same which indeed it is:

B¹A1 <= A2 and A2 <= A1ºσ =B¹A1 <= A2ºσ∧B¹A2 <= A1ºσ
= (A ¹A1ºσ ≤A ¹A2ºσ)∧ (A ¹A2ºσ ≤A ¹A1ºσ)
= (A ¹A1ºσ =A ¹A2ºσ)

Here the final step follows by antisymmetry of the integers. Because the semantics is
referentially transparent, we are allowed to replace any occurrence of one by the other
which justifies our definition by desugaring.

Computational aspects

The direct semantics for I characterizes few computational aspects of the language. It
characterizes the state transformation described by a given program, it does not define
the state transformation prescribed by a given program. In other words, our semantics
describes what the meaning of a program is (i.e., the final result, should one exist) but
it does not prescribe how that meaning is computed, i.e., the computation of a final re-
sult. For example, the multiplication in I is commutative because multiplication on the
integers is commutative, i.e., A ¹A1 * A2º = A ¹A2 * A1º for any A1 and A2 because
A ¹A1ºσ×A ¹A2ºσ = A ¹A2ºσ×A ¹A1ºσ for all σ. However, the direct semantics
does not specify if the expression A1 is “evaluated” before or after A2, or really if it is to
be evaluated at all, e.g., the semantics is free to disregard an operand if the denotation
of the other maps any given state to zero. When defining languages with a richer set
of computational effects, we are often forced to state when and how computation takes
place. In the following, we discuss some common computational aspects.

Divergence Divergence, or non-termination, is a basic computational aspects in most
languages. In particular, to specify any Turing-complete programming language the se-
mantics must account for divergence. Divergence in I is accounted for by using partial
functions as the denotations of commands. For all commands C and states σ, either
C ¹Cºσ = σ′ where σ′ is some final state, i.e., the computation terminated in some
well-defined state, or C ¹Cºσ =⊥ where ⊥ represents the undefined state, i.e., the com-
putation failed to terminate. For example, while true do C unconditionally diverges, and
indeed, its denotation is undefined on all input states. To prove this we first recall that
the denotation of while true do C was defined by the least fixed point of a function, say
F , and so we proceed by mathematical induction on the number of applications of this
function to itself defined by:

F0 = ⊥
F n+1 = λ(σ : Σ).B¹trueºσ→ F n (C ¹Cºσ), σ

= λ(σ : Σ). F n (C ¹Cºσ)
= F n ◦C ¹Cº

The base case holds trivially. The induction case is almost as simple, by the induction
hypothesis we have that F n =⊥, and thus F n ◦C ¹Cº=⊥.

For our particular language, if we removed the while command, we could define the
denotations of commands to be total functions from states to states. Everything else would
remain unchanged. In this sense, divergence is tightly controlled in our semantics of I .
For example, the possibility of divergence in commands does not affect the semantics of
arithmetic expressions in any way.
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Errors A more interesting operational aspect for our particular language would be the
possible dereferencing of uninitialized locations. In our current semantics, this possibility
is completely ruled out because the state of a program is a total function from locations
to the integers. In the following, we briefly describe what needs to change and what
choices arise when modeling uninitialized locations in the direct semantics. We refer to
this variant of the language as Ierr.

We first redefine our notion of state to account for uninitialized locations. Instead of a
total function mapping locations to integers, i.e., a total function of type Loc→ Z, we use
a total function mapping locations to either an integer as usual or to a distinguished error
value if the location is uninitialized, i.e., a total function of type Loc→ Z+ 1. For short,
we write T • for a type T lifted to include errors, i.e., as short hand for the sum type T +1.
We write • for the distinguished error value, i.e., as short hand for inr(), and we use 〈t〉val
for a non-error value, i.e., as short for inl(t). We also define some auxiliary notations for
working with errors. The mapping of a unary function, f : T1→ T2, over errors is defined
as:

f • : T1
•→ T2

•

f • = λx .case x of • → •, 〈x ′〉val → 〈 f x ′〉val

The mapping of a binary function, f : T1 × T2→ T3, over errors is defined as:

f • : T1
• × T2

•→ T3
•

f • = λ〈x1, x2〉.case x1 of
• → •,

〈x ′1〉val → case x2 of
• → •,

〈x ′2〉val → 〈 f 〈x ′1, x ′2〉〉val

The mapping of a conditional expression over errors is defined as:

x1
•
→ x2, x3 ⇐⇒ case x1 of • → •, 〈x ′1〉val → x ′1→ x2, x3

Thus equipped, the ambient state of a program is defined as a total function from
locations to the integers lifted over errors:

Σerr = (Loc→ Z•) 3 σ

A reasonable initial state could then be the state that is uninitialized at every location, i.e.,
the constant function from locations to the error value:

Σerr 3 initerr = λ(` : Loc).•

Having redefined our notion of state, we must redefine the denotations of our lan-
guage. In particular, the dereference of a location can fail, and since dereferencing a
location is an arithmetic expression, an arithmetic expression can fail. Thus, the type of
our denotations change to include errors and we map each of the numeric operators over
the error value:

A : AExp→ (Σerr→ Z•)
A ¹nº = λ(σ : Σerr). 〈N (n)〉val
A ¹`º = λ(σ : Σerr).σ(`)

A ¹A1 + A2º = λ(σ : Σerr). (A ¹A1ºσ)+• (A ¹A2ºσ)
A ¹A1 - A2º = λ(σ : Σerr). (A ¹A1ºσ)−• (A ¹A2ºσ)
A ¹A1 * A2º = λ(σ : Σerr). (A ¹A1ºσ)×• (A ¹A2ºσ)
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We must redefine the denotations for boolean expressions and for commands in a similar
way. However, the denotations for boolean expressions with errors expose other opera-
tional aspects of our language, in particular that of evaluation order.

Evaluation order and errors For our simple language, the inclusion of errors exposes
the order of evaluation in boolean expressions.1 Evaluation order refers to the order an im-
plementation can use to evaluate the sub-expressions of an expression. For example, the
evaluation order of an arithmetic expression is not determined by our semantics, even af-
ter the inclusion of errors. An implementation can choose to evaluate the sub-expressions
of an addition expression from left to right, from right to left, or even in some arbitrary
interleaving. The choice of concrete order cannot be observed.

The choice of evaluation order can be observed when we define the meaning of and
expressions in the presence of errors. We might define its denotation by simply mapping
conjunction over errors:

B¹B1 and B2º = λ(σ : Σerr). (B¹B1ºσ)∧• (B¹B2ºσ)

In this case, the meaning of an and expression is the error value if either the meaning of
the left-hand side or of the right-hand side is an error. This definition maps all errors in
sub-expressions to an error of the composite expression. For such a semantics, a correct
implementation must fully evaluate both sub-expressions in the non-error case, but could
do so in any order.

We could also define the meaning of an and expression as false if the meaning of either
of its sub-expressions is false, true if both are true, and the error value otherwise:

B¹B1 and B2º = λ(σ : Σerr). (B¹B1ºσ = 〈F〉val)∨ (B¹B2ºσ = 〈F〉val)→
〈F〉val ,
(B¹B1ºσ)∧• (B¹B2ºσ)

This definition maps as few errors as possible to errors. For such a semantics, a correct
implementation can choose to stop evaluation as soon as a sub-expression is found to be
false. As before, the evaluation can happen in any order.

A more traditional choice is to define the meaning by a sequence of conditionals:

B¹B1 and B2º = λ(σ : Σerr).B¹B1ºσ
•
→B¹B2ºσ, 〈F〉val

This definition maps any error in B1 to an error, but only if the meaning of B1 is true is
B2 considered. For such a semantics, a correct implementation must consider the sub-
expression one after the other (here from left to right) and stop if a value can be deter-
mined. This left-to-right order is commonly found in programming languages and often
referred to as a short-circuiting operation. Under this semantics, a tempting but unsound
compiler optimization would be to replace a boolean-and expression with a right-hand
side equal to false by false, i.e., ‘B1 and false’ by ‘false’. However, these two expressions
have distinct denotations in the short-circuiting semantics and are only equal under the
condition thatB¹B1ºσ 6= • for all states σ.

1In many languages, e.g., the λ-calculus, divergence is sufficient to expose the order of evaluation. That is not
the case for I because arithmetic expressions and boolean expressions are defined as total functions and commands
are explicitly sequenced.
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Another case where we must make a choice after introducing errors is for assignment
commands. We can simply reuse our previous definition unchanged:

C ¹`:= Aº = λ(σ : Σerr).λ(`′ : Loc).`= `′→A ¹Aºσ, σ(`′)

Or we can sequence the test for errors outside the update of the state:

C ¹`:= Aº = λ(σ : Σerr). caseA ¹Aºσ of
• → •,

〈i〉val → λ(`′ : Loc).`= `′→ 〈i〉val, σ(`′)

The former has the effect of delaying the computation of the right-hand side whereas the
latter strictly maps any error in the right-hand side to an error of the assignment command
itself. This difference is reminiscent of the call-by-name and call-by-value evaluation or-
ders. In the former, we associate to the location the entire computation of the right-hand
side, including errors. In the latter, we associate to the location only the non-error value,
i.e., it is established at this point that a non-error value exists. This latter evaluation order
is the most commonly used evaluation order in imperative programming languages.

Evaluation order and assignment expressions A common feature that entails sim-
ilar considerations regarding the order of evaluation is to include assignments in the
grammar of arithmetic expressions. In other words, we might move assignment from
commands into arithmetic expressions. Immediately we are forced to change the denota-
tions of arithmetic expressions to be total functions from states to an integer value in an
updated state (here for the non-error semantics):

A : AExp→ (Σ→ Z×Σ)

The denotation of an assignment expression might then be:

A ¹`:= Aº = λ(σ : Σ). 〈i, λ(`′ : Loc).`= `′→ i, σ′(`′)〉
where 〈i, σ′〉=A ¹Aºσ

In words, first we determine the integer value and updated state for the right-hand side.
Then we pair the integer value with the functional update of the state that maps the
location to the integer value. This pair is the final result of the set expression.

All of the other definitions of our semantics must now be updated to account for the
possible change of state in a sub-expression. In practice, this leaves two choices for the
semantics: either define any program that depends upon the order as “undefined”, or
explicitly thread2 the state throughout all affected parts of the semantics.

Our semantics of I already explicitly threads the state for commands, and we can
simply do so for arithmetic expressions and boolean expressions too. For example, the
following defines a left-to-right evaluation order for <=:

B¹A1 <= A2º = λ(σ : Σ). 〈i1 ≤ i2, σ′′〉
where 〈i1, σ′〉 =A ¹A1ºσ

and 〈i2, σ′′〉 =A ¹A2ºσ
′

2A parameter is threaded if it is sequenced through a chain of function calls, i.e., if it is passed as an argument
and returned as a result which is then passed as the argument for the subsequent call, and so forth. For example,
the state is threaded in the denotational definitions of commands. These definitions are sometimes said to be in
‘state-passing style’ to emphasize the threaded state.
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This change has consequences. For example, our desugaring of equality on arithmetic
expressions is not justified anymore. If we were to define the denotation directly it would
be:

B¹A1 = A2º = λ(σ : Σ). 〈i1 = i2, σ′′〉
where 〈i1, σ′〉 =A ¹A1ºσ

and 〈i2, σ′′〉 =A ¹A2ºσ
′

For this definition the denotation of 1 = (`:= ` + 1) applied to the initial state is true:

B¹1 = (`:= ` + 1)º init= T

In contrast, the denotation of the desugaring applied to the initial state is false:

B¹1 <= (`:= ` + 1) and (`:= ` + 1) <= 1º init= F

This is because the state can now be changed while it is threaded through the sub-expressions.
The desugared expression duplicates the sub-expressions thus causing the assignment to
be done twice.

Control All of the computational aspects above can be related to the general concept of
control flow: how the execution of a program takes place. We can often identify aspects
of this control flow, e.g., by inspecting differences in behavior in the presence of errors
or other computational effects. However, we can also make this control flow explicit as a
construct in the semantics itself: a continuation.

2.2.2 A continuation semantics

A continuation is a functional abstraction of what remains to be computed by the pro-
gram at a particular point. The concept of a continuation was independently developed
for several purposes, among them, the ability to express unstructured jumps, i.e., goto
commands [133, 177]. In this section, we define a continuation semantics and show how
it can express the computational aspects discussed in Section 2.2.1.3

Concretely, a continuation is a function that represents the “rest of the computation”,
thus its input is what has been computed and its output is then the final result of the
entire computation, should one exist. As defined just above, the denotation of arithmetic
expressions after explicitly threading the state was a function mapping states to pairs
of integers and updated states. Thus, the continuation of an arithmetic expression is a
partial function that takes as input both the integer that has been computed along with
the updated state and it produces the final result. We need not know the exact type of
this “final result” and so we refer to it abstractly as the answer type: α. The continuation
semantics defines the denotation of an arithmetic expression as the total function from
continuations on arithmetic expressions to partial functions from states to answers, where

3Indeed, Filinski has shown that continuations define a universal monadic effect, i.e., all other monadic effects
can be mapped to the continuation monad [90, 91].

16



2.2. Denotational semantics

a continuation is a partial function from integers and states to answers: Z→ Σ*α.

Ac : AExp→ (Z→ Σ*α)→ (Σ*α)
Ac¹nºκ = κ(N (n))
Ac¹`ºκ = λ(σ : Σ).κ(σ(`))σ

Ac¹A1 + A2ºκ = Ac¹A1º(λ(i1 : Z).Ac¹A2º(λ(i2 : Z).κ(i1 + i2)))
Ac¹A1 - A2ºκ = Ac¹A1º(λ(i1 : Z).Ac¹A2º(λ(i2 : Z).κ(i1 − i2)))
Ac¹A1 * A2ºκ = Ac¹A1º(λ(i1 : Z).Ac¹A2º(λ(i2 : Z).κ(i1 × i2)))

The treading of state is implicit, or in point-free style, in this description. The sequencing
of continuations determines the order of evaluation and, by extension, how the state is
sequenced through sub-expressions. The state can be made explicit by simplyη-expanding
it throughout.

The denotations of boolean expressions are defined in the same way as for arithmetic
expressions. The continuations are partial functions from truth values and states to an-
swers.

Bc : BExp→ (B→ Σ*α)→ (Σ*α)
Bc¹trueºκ = κ(T)
Bc¹falseºκ = κ(F)

Bc¹A1 <= A2ºκ = Ac¹A1º(λ(i1 : Z).Ac¹A2º(λ(i2 : Z).κ(i1 ≤ i2)))
Bc¹not Bºκ = Bc¹Bº(λ(b : B).κ(¬b))

Bc¹B1 and B2ºκ = Bc¹B1º(λ(b1 : B). b1→Bc¹B2ºκ, κ(F))

The denotations of a command also take an extra parameter, the continuation κ, which
is a partial function from states to final answers: Σ*α. The domain of the continuation
is Σ because the intermediate result in the direct semantics, after supplying an initial
state, was a state. In other words, the continuation takes such an intermediate state and
produces the final result, if one exists.

Cc : Com→ (Σ*α)→ (Σ*α)
Cc¹skipºκ = κ

Cc¹C1; C2ºκ = Cc¹C1º(Cc¹C2ºκ)
Cc¹`:= Aºκ = Ac¹Aº(λ(i : Z).λ(σ : Σ).κ(λ(`′ : Loc).`= `′→ i, σ(`′)))

Cc¹if B then C1 else C2ºκ = Bc¹Bº(λ(b : B). b→Cc¹C1ºκ, Cc¹C2ºκ)
Cc¹while B do Cºκ = lfp(λ( f : (Σ*α)→ (Σ*α)).

λ(κ′ : Σ*α).
Bc¹Bº(λ(b : B). b→Cc¹Cº( f κ′), κ′))κ

The denotation of a command is now a total function that produces a state transformation
when given a continuation. In other words, the denotation is now a transformation on
state transformations. The initial continuation for a program is the identity transformation
on state transformations, i.e., the identity function. The evaluation of a program is thus
the denotation of this program applied to the initial continuation and the initial state:

Ec : Com* Σ

Ec¹Cº = Cc¹Cº(λ(σ : Σ).σ)(init)

By using the identity function we have forced the type of final answers to be states.
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This continuation semantics is in continuation-passing style, or CPS for short. Namely,
the continuation is linearly passed along, all function applications are in tail position, i.e.,
any function application is the last thing to do, and finally, instead of returning a result
it is given to the continuation to produce the final result. This definition in CPS can be
mechanically obtained using a mechanical and fully-correct CPS transformation. Section
3.1 covers this transformation in more detail.

Computational aspects

In contrast to the direct semantics of Section 2.2.1, the continuation semantics embod-
ies many computational aspects of the language. Indeed, the purpose of a continuation
semantics is exactly to specify these computational aspects. We review the same aspects
as for the direct semantics starting with errors since divergence is still accounted for by a
least fixed point, albeit the least fixed point of a more complicated function.

Errors We can define the continuation semantics for the language with errors Ierr with
hardly a change to the semantic definitions. Reusing the definition of states with possibly
uninitialized locations, we simply restate the denotation of dereferencing a location:

Ac¹`ºκ= λ(σ : Σ). case σ(`) of • → •, 〈i〉val → κ(i)σ

This definition simply disregards its continuation if a location is uninitialized, thereby
terminating the entire computation with that error as the final answer. Thus the answer
type must be the state type lifted to include errors α = Σ• and the initial continuation
becomes the non-error injection into this answer type λ(σ : Σ). 〈σ〉val. This continuation
semantics is not in CPS because the definition above does not invoke the continuation in
the case of error.

Evaluation order Interestingly, we did not need to consider errors anywhere except
when dereferencing a location. In particular, we did not state how errors propagate
though sub-expressions. Not even for the short-circuiting and expression. Indeed, the
evaluation order of the continuation semantics has already been completely specified [176]
and we need not reconsider it when we introduce uninitialized locations.

Control Instead of modeling unstructured jumps, we consider structured exceptions
in terms of the throw and try-catch control operators. We call this extension of I with
exceptions Iexc. The syntax of commands is extended with two operators:

Com 3 C ::= · · · | throw | try C catch C

A throw command has no sub-expressions and has the effect of aborting the computa-
tion in the current state. A try-catch command has two sub-commands, the first is the
command to ‘try’, i.e., this command is executed until completion or until an exception
is thrown. The second sub-command is executed if and only if an exception is thrown.
We start by specifying how to throw an exception. Just as in the case of errors, throwing
an exception aborts the current continuation, but instead of returning an error value we
return the current state. As for errors the answer type is the sum type of either a normal
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state (the left injection) or an exception state (the right injection): α = Σ+Σ. The initial
continuation produces a normal state using the left injection of the sum type:

λ(σ : Σ). inl(σ)

The denotations of commands are now partial functions from states to the answer type of
normal states or exception states. We extend the definitions with a case for throw and for
try-catch:

Cc : Com→ (Σ* Σ+Σ)→ (Σ* Σ+Σ)
Cc¹throwºκ = λ(σ : Σ). inr(σ)

Cc¹try C1 catch C2ºκ = λ(σ : Σ). case Cc¹C1º(λ(σ : Σ). inl(σ))σ of
inl(σ′)→ κ(σ′),
inr(σ′)→ Cc¹C2ºκσ

′

The throw command produces an exception state using the right injection of the sum type.
The try-catch command delimits the extent of the continuation by passing the initial con-
tinuation to the denotation of the first sub-command and case-discriminating on the result
which is of answer type. If the result is a normal state then this state is passed on to the
current continuation, i.e., execution proceeds as usual. If the result is an exception state
then the meaning is given in terms of the second sub-command, i.e., execution continues
in the second sub-command with the current continuation and the new state.

Again, this continuation semantics for Iexc is not in CPS because the denotation of the
throw command does not invoke its continuation and the recursive call in the denotation
of a try-catch command is not in tail position. However, this continuation semantics can
be transformed again into CPS yielding a continuation semantics in CPS with not one, but
two continuations: a delimited continuation which is the continuation in the above se-
mantics and a new meta-continuation [64]. For our semantics these two continuations are
reminiscent of the success and failure continuations often used to describe the semantics
of errors [208]. Indeed, these two continuations can be simplified to exactly a success con-
tinuation (the delimited continuation of the above semantics) and a failure continuation
(the meta continuation obtained by CPS transforming the above semantics).

2.3 Operational semantics

In this section, we define three operational semantics for I . The semantics in Section
2.3.1 is in big-step style and defines the meaning of a program as its final result, thereby
mirroring the direct semantics of Section 2.2.1. The semantics in Section 2.3.2 is in small-
step style and defines the meaning of a program by its intermediate results. The semantics
in Section 2.3.3 is in the style of a reduction semantics and adds to the small-step style
an explicit representation of the context, thereby mirroring the continuation semantics of
Section 2.2.2.

In contrast to a denotational semantics, an operational semantics specifies rules for
manipulating symbols and the meaning of an expression is the process or result of per-
forming these manipulations. In this sense, an operational semantics defines, at face
value, only how computation takes place but not what the computation is describing. The
rules given by an operational semantics can reflect the program execution in a more or
less abstract way. Historically, rules would specify the execution of a program on some ab-
stract machine, possibly after first translating the source program into a machine-language
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program. A seminal example of this is Landin’s SECD machine for evaluating lambda
expressions [131] and his subsequent definition of the Algol programming language by
translation into these lambda expressions [132]. In this sense, the notion of an operational
semantics has a long history predating that of denotational semantics. However, opera-
tional semantics has subsequently undergone vast changes in its use of formal methods
and in its styles of presentation. A major turning point was Plotkin’s design of structural
operational semantics where the operational semantics is given by operational rules that
are defined structurally on expressions of the source language. Thus, the operational rules
are given directly for expressions of the language instead of indirectly by translation to
another and often more complicated model. The subsequent development of standard
proof techniques for relating static and dynamic aspects of a language semantics [220]
further cemented the use of operational semantics as a standard tool in specifying the
semantics of programming languages [89, 108, 148, 154, 166, 219].

In the following sections, we define each of the operational semantics in a purely syn-
tactic form to clearly contrast it with the denotational semantics of the previous section.
Other accounts are often more relaxed when it comes to mixing symbolic definitions with
mathematical constructs.

2.3.1 A big-step structural operational semantics

Using the same syntax for I , we define a structural operational semantics for it. As in
Section 2.2.1, each syntactic construct is given meaning directly in terms of the associated
mathematical meaning for that construct. However, the value or meaning of a computa-
tion is a symbolic representation as opposed to a mathematical representation. The seman-
tics is given in a big-step style also known as a natural semantics [123]. This is because
each judgment associates a syntactic construct to its final symbolic value in one big step.

Before we define the operational rules for expressions, we must define the symbolic
representation of the ambient state of a program. Here the state is a store associating
locations to numerals:

Store 3 σ ::= ε | σ[` 7→ n]

In words, the store is either empty, ε, or it contains an association of location, `, with a
value, n, together with some sub-store, σ. We use an auxiliary judgment to judge whether
a location is associated with a value in a store defined by the following rules:

ε(`) = 0 σ[` 7→ n](`) = n
` 6= `′ σ(`) = n
σ[`′ 7→ n′](`) = n

This judgment for looking up a location in a store defines a total function and can be
proved by induction of the structure of the store. The first rule explicitly associates any
unallocated location to the numerical representation of zero.

Given the definition of a store, we define the evaluation judgment for arithmetic ex-
pressions: ⇓A. This judgment associates to each arithmetic expression with a given store
its numeric value:

⇓A ⊆ AExp× Store×Num

The following rules define the judgment using infix notation:

〈n, σ〉 ⇓A n
σ(`) = n
〈`, σ〉 ⇓A n
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〈A1, σ〉 ⇓A n1 〈A2, σ〉 ⇓A n2 N (n) =N (n1) +N (n2)
〈A1 + A2, σ〉 ⇓A n

〈A1, σ〉 ⇓A n1 〈A2, σ〉 ⇓A n2 N (n) =N (n1)−N (n2)
〈A1 - A2, σ〉 ⇓A n

〈A1, σ〉 ⇓A n1 〈A2, σ〉 ⇓A n2 N (n) =N (n1)×N (n2)
〈A1 * A2, σ〉 ⇓A n

Each syntactic construct is given a value in terms of its associated mathematical meaning
together with the value of its constituents: The value of a numeral with a given store is
the numeral itself. The value of a location with a given store is the value associated with
that location in the store. The value of an addition with a given store is the numeral that
represents the mathematical meaning of addition as applied to the integers represented
by the values of the sub-expressions. We define the value of a subtraction or multiplication
similar to addition. The evaluation judgment ⇓A defines a total function from arithmetic
expressions and stores to numerals. This can be proved by induction over the structure of
arithmetic expressions.

Given the definition for arithmetic expressions, we define the evaluation judgment for
boolean expressions: ⇓B . This judgment associates to each boolean expressions with a
given store its symbolic truth value:

⇓B ⊆ BExp× Store× Bool

The following rules define the judgment using infix notation:

〈b, σ〉 ⇓B b

〈A1, σ〉 ⇓A n1 〈A2, σ〉 ⇓A n2 N (n1)≤N (n2)
〈A1 <= A2, σ〉 ⇓B true

〈A1, σ〉 ⇓A n1 〈A2, σ〉 ⇓A n2 N (n1) 6≤ N (n2)
〈A1 <= A2, σ〉 ⇓B false

〈B, σ〉 ⇓B true

〈not B, σ〉 ⇓B false

〈B, σ〉 ⇓B false

〈not B, σ〉 ⇓B true

〈B1, σ〉 ⇓B true 〈B2, σ〉 ⇓B true

〈B1 and B2, σ〉 ⇓B true

〈B1, σ〉 ⇓B false

〈B1 and B2, σ〉 ⇓B false

〈B2, σ〉 ⇓B false

〈B1 and B2, σ〉 ⇓B false

As described in detail for the rules of arithmetic expressions, we define the value of each
syntactic construct in terms of the associated mathematical construct together with the
value of the sub-expressions. Again, the evaluation judgment ⇓B defines a total function
from boolean expressions and stores to syntactic truth values. This can be proved by
induction over the structure of boolean expressions.

Given the definition for arithmetic expressions and boolean expressions, we define the
evaluation judgment for commands ⇓C . This judgment associates to each command with
a given store its final store value, should one exist:

⇓C ⊆ Com× Store× Store
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The following rules define the judgment using infix notation:

〈skip, σ〉 ⇓C σ

〈C1, σ〉 ⇓C σ
′ 〈C2, σ′〉 ⇓C σ

′′

〈C1; C2, σ〉 ⇓C σ
′′

〈A, σ〉 ⇓A n
〈`:= A, σ〉 ⇓C σ[` 7→ n]

〈B, σ〉 ⇓B true 〈C1, σ〉 ⇓C σ
′

〈if B then C1 else C2, σ〉 ⇓C σ
′

〈B, σ〉 ⇓B false 〈C2, σ〉 ⇓C σ
′

〈if B then C1 else C2, σ〉 ⇓C σ
′

〈B, σ〉 ⇓B true 〈C , σ〉 ⇓C σ
′ 〈while B do C , σ′〉 ⇓C σ

′′

〈while B do C , σ〉 ⇓C σ
′′

〈B, σ〉 ⇓B false

〈while B do C , σ〉 ⇓C σ

In words: The value of skip with a given store is the store. The value of a sequence
command with a given store is the store obtained by threading the given store through
the sequence of sub-commands. The value of an assignment with a given store is the
extension of the store that associates the assigned-to location with the value of the arith-
metic expression. The value of an if command with a given store is the value of the first
or second sub-command depending on the value of the predicate. The value of a while
command with a given store is the store if the value of the predicate is false. If the value
of the predicate is true, then the value is the store obtained by threading the given store
once through the sub-command and then through the same syntactic while command.
The evaluation judgment ⇓C defines a partial function. This can be proved by structural
induction on derivations of ⇓C .

Finally we define program evaluation as command evaluation starting with some initial
store, e.g., the empty store:

Definition 1 (program evaluation). A program C evaluates to the final storeσ if and only
if, 〈C , ε〉 ⇓C σ holds.

The evaluation of a program is deterministic as a corollary of ⇓C defining a partial function.
This definition of a big-step semantics concludes our first operational semantics for I .

The definition is similar to the direct semantics of Section 2.2.1 but differs one important
way. The definition for while commands is non-compositional: it is defined recursively on
the while command itself, which is not a proper sub-expression. Indeed, this semantics
can only define the meaning of terminating expressions as we will discuss in the following
section.

Computational aspects

Similar to the direct-style denotational semantics of Section 2.2.1, this big-step structural
operational semantics characterizes few computational aspects of the language. Com-
pared to the direct semantics, extending the big-step semantics to handle errors and ac-
count for evaluation order requires more changes: we end up duplicating rules to account
for, e.g., normal evaluations and erroneous evaluations. This duplication is largely due to
the lack of higher-order abstractions in the big-step semantics caused by our insistence on
using a purely syntactic account.

Divergence The rules defined for the while command admit divergence and as a result
they violate the principle of structural recursion. Indeed, the value definition of a while
command is defined recursively in terms of the value of the same command where only
the store has potentially changed. In other words, there is no decreasing measure in our
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definition and there might not be a value associated to a while command. For example,
while true do C unconditionally diverges, and indeed, our semantics cannot associate a
value to this term, i.e., there exist no finite derivation for this command. Assume we
have a finite derivation D with sub-derivations E1 and E2 that associates a value to this
command:

〈true, σ〉 ⇓B true

E1

〈C , σ〉 ⇓C σ
′

E2

〈while true do C , σ′〉 ⇓C σ
′′

〈while true do C , σ〉 ⇓C σ
′′

Here the derivation E2 must recursively contain the entire derivation D where σ′ has
been substituted for σ. This causes the sub-derivation to be strictly larger than the entire
derivation. This proves the non-existence of a finite derivation of E2 and thus the non-
existence of a value for the command.

Errors There are several ways to account for errors in the big-step semantics. We might
consider the inability to continue computation an “error”. In other words, at a particular
point during evaluation there exists no rule that can be applied to the current expression
which is then said to be stuck and as a result the entire computation has gone wrong.
Just as divergence manifests itself as an infinitely expanding derivation, errors manifest
themselves as the impossibility of expanding an incomplete derivation. A problem with
this approach is that, from a formal standpoint, both of these aspects amount to the non-
existence of a derivation which is not immediately distinguishable. From a computational
standpoint they are different. An error is the property of halting in an unexpected state
whereas divergence is the property of never halting.

Alternatively we can introduce a distinguished value denoting an error, just as we did
for the direct semantics of Section 2.2.1. We reuse the notation T • to lift a type T to
include errors and use v to denote either a value in T (the left injection) or the error
value • (the right injection), i.e., v ∈ T • = T + 1 for some T . The store now maps an
uninitialized location to the error value instead of zero:

ε(`) = • σ[` 7→ n](`) = 〈n〉val

` 6= `′ σ(`) = v
σ[`′ 7→ n′](`) = v

The evaluation judgment must now account for the possibility of an error value. In con-
trast to the direct semantics, we must explicitly state rules for both the intended return
value and the error value. The evaluation judgment now associates to each arithmetic
expression with a given store its symbolic truth value or an error:

⇓A ⊆ AExp× Store×Num•

In the non-error case the rules are simply restated to act on the non-error value (the left
injection) and errors when dereferencing are simply passed on:

〈n, σ〉 ⇓A 〈n〉val

σ(`) = v
〈`, σ〉 ⇓A v

〈A1, σ〉 ⇓A 〈n1〉val 〈A2, σ〉 ⇓A 〈n2〉val N (n) =N (n1) +N (n2)
〈A1 + A2, σ〉 ⇓A 〈n〉val
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〈A1, σ〉 ⇓A 〈n1〉val 〈A2, σ〉 ⇓A 〈n2〉val N (n) =N (n1)−N (n2)
〈A1 - A2, σ〉 ⇓A 〈n〉val

〈A1, σ〉 ⇓A 〈n1〉val 〈A2, σ〉 ⇓A 〈n2〉val N (n) =N (n1)×N (n2)
〈A1 * A2, σ〉 ⇓A 〈n〉val

In addition we must now specify the propagation of errors. To match the direct semantics
of Section 2.2.1, we map any error in a sub-expressions to an error of the composite
expression:

〈A1, σ〉 ⇓A •
〈A1 + A2, σ〉 ⇓A •

〈A2, σ〉 ⇓A •
〈A1 + A2, σ〉 ⇓A •

〈A1, σ〉 ⇓A •
〈A1 - A2, σ〉 ⇓A •

〈A2, σ〉 ⇓A •
〈A1 - A2, σ〉 ⇓A •

〈A1, σ〉 ⇓A •
〈A1 * A2, σ〉 ⇓A •

〈A2, σ〉 ⇓A •
〈A1 * A2, σ〉 ⇓A •

These rules specify a total function from arithmetic expressions and state to numerals or
errors. Indeed, the same function as defined for direct semantics for Ierr.

Evaluation order As in the denotational case, the inclusion of error values forces us to
pick a particular order when evaluating a boolean-and expression. As discussed in Section
2.2.1, there are several choices of evaluation order. We use the same short-circuiting left-
to-right evaluation order:

〈B1, σ〉 ⇓B •
〈B1 and B2, σ〉 ⇓B •

〈B1, σ〉 ⇓B 〈false〉val

〈B1 and B2, σ〉 ⇓B 〈false〉val

〈B1, σ〉 ⇓B 〈true〉val 〈B2, σ〉 ⇓B •
〈B1 and B2, σ〉 ⇓B •

〈B1, σ〉 ⇓B 〈true〉val 〈B2, σ〉 ⇓B 〈false〉val

〈B1 and B2, σ〉 ⇓B 〈false〉val

〈B1, σ〉 ⇓B 〈true〉val 〈B2, σ〉 ⇓B 〈true〉val

〈B1 and B2, σ〉 ⇓B 〈true〉val

In words: If the left-hand side evaluates to an error, the composite expression evaluates
to an error. If the left-hand side evaluates to false, the composite expression evaluates to
false. If the left-hand side evaluates to true, the composite expression evaluates to the
evaluation of the right-hand side, i.e., an error, false or true.

In contrast to the direct-style denotational semantics in Section 2.2.1, the structural
operational semantics has already fixed the evaluation order with respect to the store
because the store is defined as an association of locations with numerals. To restate the
evaluation rules for assignment commands to propagate errors, we are forced to evaluate
the arithmetic expression at the time of assignment as opposed to doing so at the time of
dereferencing the location. We can specify the evaluation order that delays the evaluation
until dereferencing the location which is reminiscent of the call-by-name evaluation order.
Doing so would require changing the type of our store to associate arithmetic expressions
to locations and then update the rules for assignment and dereferencing accordingly.
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Control As illustrated for errors and evaluation order in the above, it is cumbersome to
specify computational aspects in the big-step semantics. In some cases the specification
size can double. In the following sections, we present two other semantics that provide
more expressive tools to specify these computational aspects.

2.3.2 A small-step structural operational semantics

Using the same syntax for I , we define another structural operational semantics. In the
previous Section, we defined an operational semantics using a big-step style where each
expression was associated to its final result. In this section, we define an operational
semantics using a small-step style where each expression is associated with the expression
resulting from a single step.

We reuse the syntactic definition of a store defined in Section 2.3.1 as well as the
auxiliary judgment for looking up the value of a location in the store. The small-step op-
erational semantics for I takes the form of several judgments that associate with each
expression the expressions that it can immediately step to. The judgments can be clas-
sified in two groups: the computational rules that define the actual computational steps,
and the congruence rules that define how evaluation propagates through sub-expressions.
We start with the step judgment for arithmetic expressions that associates to each arith-
metic expressions with a given store the arithmetic expression that is the result of a single
computational step:

⇒a ⊆ AExp× Store× AExp

The computational rules are defined as follows:

σ(`) = n
〈`, σ〉 ⇒a n

N (n) =N (n1) +N (n2)
〈n1 + n2, σ〉 ⇒a n

N (n) =N (n1)−N (n2)
〈n1 - n2, σ〉 ⇒a n

N (n) =N (n1)×N (n2)
〈n1 * n2, σ〉 ⇒a n

Each rule specifies how an arithmetic expression of a particular shape can be directly
reduced, i.e., what the expression steps to. A location with a given store steps to the
value associated with that location in the store. An addition expression where the two sub-
expressions are numerals steps to the numeral that represents the mathematical meaning
of addition as applied to the integers represented by the sub-expressions. We define the
step of a subtraction or of a multiplication similar to addition.

The congruence rules are defined as follows:

〈A1, σ〉 ⇒a A′1
〈A1 + A2, σ〉 ⇒a A′1 + A2

〈A2, σ〉 ⇒a A′2
〈n1 + A2, σ〉 ⇒a n1 + A′2

〈A1, σ〉 ⇒a A′1
〈A1 - A2, σ〉 ⇒a A′1 - A2

〈A2, σ〉 ⇒a A′2
〈n1 - A2, σ〉 ⇒a n1 - A′2

〈A1, σ〉 ⇒a A′1
〈A1 * A2, σ〉 ⇒a A′1 * A2

〈A2, σ〉 ⇒a A′2
〈n1 * A2, σ〉 ⇒a n1 * A′2

Each congruence rule specifies how an arithmetic expression of a particular shape can
be reduced in terms of reductions of its sub-expressions. In particular, these congruence
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rules specify a left-to-right evaluation order for the arithmetic operators. Any addition
expression, for which the first sub-expression can take a step, can itself take a step by
replacing its first sub-expression by the expression that the sub-expressions steps to. Any
addition expression, for which the first sub-expression is a numeral and the second sub-
expression can take a step, can itself take a step by replacing its second sub-expression
by the expression that the sub-expressions steps to. The congruence rules for subtraction
and multiplication are defined similar to those for addition.

Given the step judgment for arithmetic expressions, we define the step judgment that
associates to each boolean expression with a given store the boolean expression that is
the result of a single computational step:

⇒b ⊆ BExp× Store× BExp

The computational rules are defined as follows:

N (n1)≤N (n2)
〈n1 <= n2, σ〉 ⇒b true

N (n1) 6≤ N (n2)
〈n1 <= n2, σ〉 ⇒b false

〈not true, σ〉 ⇒b false 〈not false, σ〉 ⇒b true

〈true and B2, σ〉 ⇒b B2 〈false and B2, σ〉 ⇒b false

As detailed for arithmetic expressions above, each rule specifies how a boolean expression
of a particular shape can be directly reduced, i.e., what the expression steps to. The
congruence rules are defined as follows:

〈A1, σ〉 ⇒b A′1
〈A1 <= A2, σ〉 ⇒b A′1 <= A2

〈A2, σ〉 ⇒b A′2
〈n1 <= A2, σ〉 ⇒b n1 <= A′2

〈B, σ〉 ⇒b B′

〈not B, σ〉 ⇒b not B′
〈B1, σ〉 ⇒b B′1

〈B1 and B2, σ〉 ⇒b B′1 and B2

Each congruence rule specifies how a boolean expression of a particular shape can be re-
duced in terms of reductions of its sub-expressions. Again, these congruence rules specify
a left-to-right evaluation order for the arithmetic operator. For the boolean-and expres-
sion the last rule specifies a short-circuiting evaluation order where reduction only occurs
in the left-hand sub-expression.

Finally, we define the step judgment that associates to each command with a given
store the command and store that is the result of a single step:

⇒c ⊆ Com× Store× Com× Store

The computational rules are defined as follows:

〈skip; C2, σ〉 ⇒c 〈C2, σ〉 〈`:= n, σ〉 ⇒c 〈skip, σ[` 7→ n]〉

〈if true then C1 else C2, σ〉 ⇒c 〈C1, σ〉 〈if false then C1 else C2, σ〉 ⇒c 〈C2, σ〉

〈while B do C , σ〉 ⇒c 〈if B then (C; while B do C) else skip, σ〉
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These rules specify which commands can directly take a step. A sequence command for
which the first sub-command is a skip, i.e., it is done, steps to the second sub-command
leaving the store unchanged. An assignment command for which the right-hand side
is a numeral steps to a skip, i.e., the assignment is done, and updates the store with a
binding from the location to the numeral. An if command for which the predicate is the
syntactic value true (resp. false) steps to the first (resp. second) sub-command leaving
the store unchanged. A while command unconditionally expands to the sequence of its
sub-command (i.e., its body) followed by the while command itself. The entire expression
is then guarded by the predicate in an if command and leaves the store unchanged. The
congruence rules are defined as follows:

〈C1, σ〉 ⇒c 〈C ′1, σ′〉
〈C1; C2, σ〉 ⇒c 〈C ′1; C2, σ′〉

〈A, σ〉 ⇒a A′

〈`:= A, σ〉 ⇒c 〈`:= A′, σ〉

〈B, σ〉 ⇒b B′

〈if B then C1 else C2, σ〉 ⇒c 〈if B′ then C1 else C2, σ〉
Each congruence rule specifies how a command of a particular shape can be reduced
in terms of the reductions of its sub-expressions. In words, a sequence, for which the
first sub-command can take a step, steps to the sequence where the first sub-command
is replaced by the command it steps to. An assignment command, for which the right-
hand side can take a step, steps to the assignment command where the right-hand side is
replaced by the arithmetic expression it steps to. An if command, for which the predicate
can take a step, steps to the if command where the predicate is replaced by the boolean
expression it steps to.

To define the evaluation of a full program we define the reflexive and transitive eval-
uation judgment that expresses the iterative evaluation of commands:

〈C , σ〉 ⇒∗c 〈C , σ〉
〈C , σ〉 ⇒c 〈C ′, σ′〉 〈C ′, σ′〉 ⇒∗c 〈C

′′, σ′′〉
〈C , σ〉 ⇒∗c 〈C

′′, σ′′〉

Definition 2 (final configurations). Using s and s′ to denote configurations of a step judg-
ment⇒, a configuration is a said to be a final configuration if no further step can be taken:

s final ⇐⇒ there exists no s′ such that s⇒ s′ holds

In particular, a skip command together with any store is a final configuration of the step
judgment on commands, i.e., 〈skip, σ〉 final holds.

The evaluation of a program is then defined as the iteration of the step judgment
starting with some initial store, e.g., the empty store, to a final configuration:

Definition 3 (program evaluation). A program C evaluates to the final storeσ if and only
if, 〈C , ε〉 ⇒∗c 〈skip, σ〉 holds.

The evaluation of a program is deterministic because each of the step judgments are de-
terministic.

Computational aspects

This small-step operational semantics expresses the individual computational steps and
in so doing it expresses computational aspects of the language that the big-step semantics
did not.
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Divergence In the small-step semantics, divergence is characterized as a configuration,
in our case an expression and a store, that cannot be evaluated to a final configuration:

Definition 4 (diverging configurations). Using s, s′ and s′′ to denote configurations of a
step judgment ⇒, a configuration is said to diverge if for all s′ such that s ⇒∗ s′ holds
there exist an s′′ such that s′⇒ s′′ holds, i.e., s′ final does not hold.

For example, for any command C and store σ, the configuration 〈while true do C , σ〉
diverges. First we show that for any configuration s, such that 〈while true do C , σ〉 ⇒∗c s
holds, then for some C ′ and σ′ either

s = 〈while true do C , σ′〉,
s = 〈if true then C; while true do C else skip, σ′〉, or
s = 〈C ′; while true do C , σ′〉.

In the first case, there exists a step which steps to an instance of the second case. In the
second case, there exists a step which steps to an instance of the third case. In the third
case we show that either 〈C , σ〉 diverges, in which case so does the above and we are
done, or 〈C ′, σ′〉 ⇒∗c 〈skip, σ′′〉 holds. In the latter case, a non-empty sequence of steps
exists to 〈while true do C , σ′′〉 which is itself an instance of the first case.

Errors In the small-step operational semantics we define errors as stuck configurations.
A stuck configuration is a configuration that cannot take a step and which is not an expected
final configuration. The final configurations are those containing value expressions where
values are a suitable subset of expressions. For arithmetic expressions, values are the
numerals. For boolean expressions, values are the representations of the truth values. For
commands, the skip command is the only value form.

Definition 5 (stuck configurations). An arithmetic expression with a store is a stuck con-
figuration if it is a final configuration and the arithmetic expression is not a numeral. A
boolean expression with a store is a stuck configuration if it is a final configuration and the
boolean expression is not true or false. A command with a store is a stuck configuration
if it is a final configuration and the command is not skip.

〈A, σ〉 stuck ⇐⇒ 〈A, σ〉 final and A 6∈ Num
〈B, σ〉 stuck ⇐⇒ 〈B, σ〉 final and B 6∈ Bool
〈C , σ〉 stuck ⇐⇒ 〈C , σ〉 final and C 6= skip

To introduce errors we simply remove one of the rules in the store-lookup judgment.
Instead of associating zero to an unallocated location we simply remove the rule alto-
gether. Nothing else is changed. In this formulation errors are represented by a property
of the semantics, i.e., by the meta-level language. This in contrast to the other semantics
we have seen so far that all represent errors by an explicit semantic object.

In addition to specifying errors, this small-step operational semantics has already made
explicit the order of evaluation. Defining the semantics in sufficiently small steps forces
the specification of evaluation order. However, the semantics does not easily allow us to
specify arbitrary control effects which is the topic of the following section.
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2.3.3 A reduction semantics

Using the same syntax for I , we define another operational semantics for the I language.
This operational semantics is given in the form of a reduction semantics and exposes ad-
ditional aspects of I ’s computational structure. The notion of a reduction semantics was
invented by Felleisen to facilitate syntactic definitions of control and state [85]. Section
2.2.2 illustrated how the continuation semantics made explicit the context of the compu-
tation as a mathematical construct called the continuation. To similar effect, the reduction
semantics makes explicit the context of the computation as a syntactic construct called the
reduction context or sometimes the evaluation context.

A reduction semantics is typically specified in three parts: 1. the grammar of expres-
sions, 2. the grammar of reduction contexts, and 3. the contraction rules. The expressions
of our language are the same as defined in Section 2.1. The reduction context define the
places where reduction can occur. These contexts correspond to the places in an expres-
sion where the congruence rules defined in Section 2.3.2 allow steps in sub-expressions
to take place. The contraction rules define which expressions can be contracted, within
some context, to form a reduced expression. These contraction rules correspond to the
computational rules defined in Section 2.3.2.

We start by defining the contraction rules for each of the syntactic domains. These
contraction rules are transliterated directly from the computational rules of the small-
step structural operational semantics in Section 2.3.2. The four computational rules for
arithmetic expressions become four contraction rules for arithmetic expressions:

〈`, σ〉 →a n where σ(`) = n
〈n1 + n2, σ〉 →a n where N (n) =N (n1) +N (n2)
〈n1 - n2, σ〉 →a n where N (n) =N (n1)−N (n2)
〈n1 * n2, σ〉 →a n where N (n) =N (n1)×N (n2)

These rules define a contraction judgment using a slightly different notation: the judgment
holds if and only if the premises hold, where the premises are specified in a conditional
clause to the right of the rule. An expression that matches the left-hand side of a rule is
called a redex (short hand for reducible expression) and the result of contracting a redex
to match the right-hand side of a rule is called the contractum.

The six computational rules for boolean expressions become six contraction rules for
boolean expressions:

〈n1 <= n2, σ〉 →b true where N (n1)≤N (n2)
〈n1 <= n2, σ〉 →b false where N (n1) 6≤ N (n2)
〈not true, σ〉 →b false
〈not false, σ〉 →b true

〈true and B2, σ〉 →b B2
〈false and B2, σ〉 →b false

The five computational rules for commands become five contraction rules for commands:

〈skip; C2, σ〉 →c 〈C2, σ〉
〈`:= n, σ〉 →c 〈skip, σ[` 7→ n]〉

〈if true then C1 else C2, σ〉 →c 〈C1, σ〉
〈if false then C1 else C2, σ〉 →c 〈C2, σ〉

〈while B do C , σ〉 →c 〈if B then (C; while B do C) else skip, σ〉
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We define the grammar of reduction contexts for each of the syntactic domains in cor-
respondence with the congruence rules of the small-step structural operational semantics
in Section 2.3.2. The six congruence rules for arithmetic expressions give rise to six non-
terminals in the grammar of arithmetic reduction contexts together with a single terminal
denoting the empty context:

ACtx 3 Ea ::= � | Ea + A2 | n1 + Ea | Ea - A2 | n1 - Ea | Ea * A2 | n1 * Ea

The four congruence rules for boolean expressions give rise to four non-terminals in
the grammar of boolean reduction contexts together with a single terminal denoting the
empty context:

BCtx 3 Eb ::= � | Ea <= A2 | n1 <= Ea | not Eb | Eb and B2

The three congruence rules for commands give rise to three non-terminals in the gram-
mar of command reduction contexts together with a single terminal denoting the empty
context:

CCtx 3 Ec ::= � | Ec; C2 | `:= Ea | if Eb then C1 else C2

With these definitions we define one-step reduction as the closure of the contraction
rules over the reduction contexts. There are three reduction rules, one for each type of
contraction that can take place: contraction of an arithmetic expression, contraction of a
boolean expression, and contraction of a command:

Definition 6 (one-step reduction). The one-step-reduction judgment is inductively de-
fined by the three rules:

〈A, σ〉 →a A′

〈Ec[A], σ〉 7→c 〈Ec[A′], σ〉
〈B, σ〉 →a B′

〈Ec[B], σ〉 7→c 〈Ec[B′], σ〉
〈C , σ〉 →c 〈C ′, σ′〉

〈Ec[C], σ〉 7→c 〈Ec[C ′], σ′〉

In words, if a command C decomposes into a reduction context Ec and a reducible arith-
metic expression, the command reduces to the recomposition of the reduction context
with the contractum of the reducible arithmetic expression leaving the store unchanged.
Likewise for a reducible boolean expression and a reducible command, only for commands
the store can be changed.

Evaluation is the reflexive transitive closure of one-step reduction:

Definition 7 (reduction-based evaluation).

〈C , σ〉 7→∗c 〈C , σ〉
〈C , σ〉 7→c 〈C ′, σ′〉 〈C ′, σ′〉 7→∗c 〈C

′′, σ′′〉
〈C , σ〉 7→∗c 〈C

′′, σ′′〉

Evaluation of a program is then defined as the iteration of one-step reduction with
some initial store, e.g., the empty store, to a final value:

Definition 8 (program evaluation). A program C evaluates to the final store σ, if and
only if 〈C , ε〉 7→∗c 〈skip, σ〉 holds.

The evaluation of a program is deterministic if and only if decomposition, contraction
and recomposition are deterministic. Recomposition is deterministic by definition and
in our case contraction and decomposition are also deterministic. In general, unique or
deterministic decomposition can be hard to prove [221]. In Section 4.1, we give a method
to derive the grammar of reduction contexts and the decomposition function mechanically
starting from a compositional specification and where unique decomposition follows as a
corollary.
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Computational aspects

The reduction semantics can almost be seen as simply a stylistic alternative to a small-
step structural operational semantics. Indeed, the semantics as stated specifies the same
computational aspects using the same mechanisms as in Section 2.3.2. The key difference
is the explicit specification of contexts as a semantic object in its own right as opposed to
a set of congruence rules. This difference allows use of the context of a computation to
specify control operators, e.g., goto, call/cc, and co-routines.

Control To illustrate the specification of control operators, we consider the extended
language Iexc with the same try-catch exceptions as in Section 2.2.2. The syntax of com-
mands is extended with two operators:

Com 3 C ::= · · · | throw | try C catch C

The contexts are likewise extended to allow reduction in the body of a try-catch expres-
sion:

CCtx 3 Ec ::= · · · | try Ec catch C

In addition we define a subtype of command contexts to denote the context in which an
exception can be thrown. This can happen in a command sequence or in the body of a try
command:

ExcCtx 3 F ::= � | F; C2

This is a proper subtype such that ExcCtx ⊂ CCtx.
The contraction rules for these control operators are simply added to the existing rules

defining the contraction judgment for commands:

〈try skip catch C , σ〉 →c 〈skip, σ〉
〈try F[throw] catch C , σ〉 →c 〈C , σ〉

In words: A try-catch where the body is reduced to a skip command reduces to a skip com-
mand, i.e., the exception-handling command is disregarded. A try-catch where the body
is reduced to a throw command, in the restricted context allowing exceptions, reduces to
the exception-handling command. In both cases the store remains unchanged.

An alternative but equivalent specification of exceptions could define throw as a com-
mand value in addition to the skip value. The reduction rules would then propagate the
throw value through commands. These propagation rules would correspond exactly to
the exception contexts defined above. Indeed, this style of specification would be used
to add exceptions to the small-step semantics in Section 2.3.2. However, with an explicit
grammar of contexts, we can state operators that capture the context and allow to later
reinstantiate it, e.g., for co-routines or other advanced control operators.

2.4 Representations and implementations

In this section we give two implementations of I : the first implements the direct seman-
tics of Section 2.2.1, and the second implements the reduction semantics of Section 2.3.3.
The implementation language is a pure functional subset of core Standard ML [146]. The
implementations are used in the following two chapters to illustrate the functional corre-
spondence (Chapter 3) and the syntactic correspondence (Chapter 4). We will largely take
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these implementations in a pure functional languages to be our specifications, i.e., they
are definitional interpreters in the sense of Reynolds [176]. Indeed, the specification of
a programming language by way of a functional implementation has a long-standing tra-
dition going back to McCarthy’s original specification of LISP in LISP [142], and Landin’s
specification of Algol as a translation to lambda expressions for execution on the SECD
machine [131, 132]. The discussion of what is the meaning of a specification for a pro-
gramming language is just as long-standing going back to Scott’s critique of the untyped
λ-calculus [189]. This discussion has fostered a large amount of research in developing
theories for semantic specifications and methods to relate them. It has also fostered re-
search on semantics-based generation of implementations as can be gathered in Schmidt’s
textbook [186, Chapter 10]. Before defining the implementations of I , we review a
few central concepts for relating semantic specifications, representations and implemen-
tations.

Adequacy Following LF terminology [109, 110], an adequate representation is an en-
coding of the semantic apparatus that is isomorphic to the informal specification.4 Thus,
any element of the informal semantics must be represented in the encoding by a bijection.
Furthermore, this bijection must be structure preserving, i.e., it must preserve contextual
properties of the informal semantics such as substitution.

The term ‘adequacy’ is sometimes used to refer to the soundness of a semantics with
respect to another semantics or to an implementation. We discuss soundness in the sub-
sequent paragraphs.

Observational equivalence Two expressions are said to be observationally equivalent
if we can freely replace any occurrence of one by the other in any program without an
observable difference. More precisely, e1 and e2 are observationally equivalent if and only
if, for all contexts C:

O (C[e1]) = O (C[e2])

Where C is a one-hole context such that C[e1] and C[e2] are well-formed and closed ex-
pressions. The observation function, O , is some function from expressions to observable
outcomes. The definition of this function, and thus what constitutes an observable out-
come, is relative to our intended use for the semantics. An observable outcome could be
as simple as the final result produced by an implementation, or it could be as complicated
as the trace of input-output behavior.

Soundness A semantics is sound if the expressions it equates are observationally equiv-
alent. More precisely, a semantics defined by the semantic function, ¹·º, is sound if and
only if, ¹e1º= ¹e2º implies that e1 and e2 are observationally equivalent.

Conversely, an implementation is correct if all semantically equivalent expressions are
observationally equivalent where the observable outcomes are defined in terms of the
implementation.

4By an informal specification, we mean a specification as defined “on paper” as opposed to a mechanized
specification in a fully formalized system, such as LF.
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eqtype int
val + : int * int -> int
val - : int * int -> int
val * : int * int -> int

eqtype num
val num : int -> num
val refl : num -> int

eqtype loc
val loc : int -> loc

Figure 2.1: Abstract signatures for integers, numerals and locations

datatype aexp
= NUM of num
| REF of loc
| ADD of aexp * aexp
| SUB of aexp * aexp
| MUL of aexp * aexp

datatype bexp
= TRUE
| FALSE
| LEQ of aexp * aexp
| NOT of bexp
| AND of bexp * bexp

datatype com
= SKIP
| SEQ of com * com
| SET of loc * aexp
| IF of bexp * com * com
| WHILE of bexp * com

Figure 2.2: A functional representation of the abstract syntax

Full abstraction A semantics is fully abstract if it is in complete agreement with obser-
vational equivalence. More precisely, a semantics defined by the semantic function, ¹·º,
is fully abstract if and only if, the semantics is sound, and if e1 and e2 are observationally
equivalent, then ¹e1º= ¹e2º.

Let us define the observable outcomes of a command in I to be either that it diverges
or that it converges with some value at a particular locations in the store, as defined by
any one of the operational evaluation definitions in Section 2.3. Then both the direct
semantics and the continuation semantics are fully abstract and thus all of the semantics
of Chapter 2, both denotational and operational, define the same language.5 However,
for more realistic languages that include elements at higher types, defining a fully abstract
denotational semantics has proved difficult, as initially pointed out by Plotkin [170].

2.4.1 A functional representation of the abstract syntax

In this section, we give a functional representation of the syntax of I as defined in Section
2.1. We leave the implementation of numerals and locations opaque and construct them
by injections from the integers. Similarly, we leave the implementation of the integers
opaque and assume the actual implementation adequate. The Standard ML signatures
for integers, numerals and locations are displayed in Figure 2.1. All remaining definitions
in Standard ML assume that a valid implementation of each is lexically available.

The functional representation of well-formed expressions is shown in Figure 2.2. We
represent each syntactic domain by an inductively defined data type, e.g., AExp becomes
the data type aexp. Each production within the syntactic domain is represented by a con-
structor of that data type, e.g., + which takes two subexpressions in AExp becomes the
constructor ADD which takes two values of type aexp. This encoding is an adequate rep-
resentation of the syntax of I . The algebraic data types of Standard ML define inductive
types6 these are easily shown to be in one-to-one correspondence with the BNF grammar
of I . There are no binding constructs in the language and thus no need for substitution,
i.e., it is sufficient to witness this bijection to show adequacy.

5Reynolds discusses full abstraction for a similar imperative language [178, Chapter 2.8].
6This is in contrast to many other languages, such as OCaml and Haskell, where algebraic data types do not

define inductive types.

33



2. The semantics of programming languages

(* aexp -> state -> int *)
fun aeval (NUM n) = (fn s => refl n)
| aeval (REF l) = (fn s => s l)
| aeval (ADD (a1, a2)) = (fn s => aeval a1 s + aeval a2 s)
| aeval (SUB (a1, a2)) = (fn s => aeval a1 s - aeval a2 s)
| aeval (MUL (a1, a2)) = (fn s => aeval a1 s * aeval a2 s)

(* bexp -> state -> bool *)
fun beval (TRUE) = (fn s => true)
| beval (FALSE) = (fn s => false)
| beval (LEQ (a1, a2)) = (fn s => aeval a1 s <= aeval a2 s)
| beval (NOT b) = (fn s => not (beval b s))
| beval (AND (b1, b2)) = (fn s => beval b1 s andalso beval b2 s)

(* com -> state -> state *)
fun ceval (SKIP) = (fn s => s)
| ceval (SEQ (c1, c2)) = (fn s => ceval c2 (ceval c1 s))
| ceval (SET (l, a)) = (fn s => fn l’ => if l = l’ then aeval a s else s l’)
| ceval (IF (b, c1, c2)) = (fn s => if beval b s then ceval c1 s else ceval c2 s)
| ceval (WHILE (b, c)) = let fun f s = if beval b s then f (ceval c s) else s

in f
end

(* com -> state *)
fun eval c = ceval c (fn l => 0)

Figure 2.3: A functional implementation of the direct-style semantics

2.4.2 A functional implementation of the direct semantics

In this section, we give a functional implementation of the direct semantics of I as de-
fined in Section 2.2.1. The implementation uses the signature of integers in Figure 2.1
to represent Z. The built-in Standard ML type bool represents B. The two constructors
true and false represent T and F respectively, not represents negation, andalso repre-
sents conjunction (which happens to be short-circuiting), and the conditional expression
if _ then _ else _ represents the mathematical conditional expression. The total func-
tion space for state is represented by the function type: type state = loc -> int. This
function space is total in the encoding. Just as in the semantics, we define evaluation of
a program with respect to an initial state defined by a total function.

We transliterate the definition in Section 2.2.1 to ML as shown in Figure 2.3. Each
syntactic function (A ¹·º,B¹·º, and C ¹·º) is transliterated to an ML function in curried
form (aeval, beval, and ceval). To represent the least fixed point we use local recursion
which is, in Standard ML, defined by the least fixed point. The implementation is cor-
rect. Expressions of undefined meaning fail to terminate and expressions of well-defined
meaning terminate with a value that represents this meaning. The implementation is not
easily shown to be adequate. In particular, the function space of ML is partial and as such
there are representable expressions in the encoding of state that cannot be mapped back
to elements in the total function space of the informal semantics. As it happens, we can
show that our encoding never constructs such undefined expressions, e.g., any function in
the encoding of state is a total function. Proving adequacy is possible but is complicated
by these issues and outside the scope of these dissertation. However, in Chapter 11, we
illustrate how to prove adequacy of encodings in a logical framework and how to apply
derivational techniques similar to those presented in the remainder of this thesis.
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datatype aval = VNUM of num
datatype ared
= PR_REF of loc
| PR_ADD of aval * aval
| PR_SUB of aval * aval
| PR_MUL of aval * aval

datatype bval = VTRUE
| VFALSE

datatype bred
= PR_LEQ of aval * aval
| PR_NOT of bval
| PR_AND of bval * bexp

datatype cval = VSKIP
datatype cred
= PR_SEQ of cval * com
| PR_SET of loc * aval
| PR_IF of bval * com * com
| PR_WHILE of bexp * com

Figure 2.4: A functional representation of values and redexes

datatype store = EMPTY
| ASSOC of loc * aval * store

(* loc * store -> aval option *)
fun lookup (l, EMPTY) = VNUM 0
| lookup (l, ASSOC (l’, v, st)) = if l = l’ then v else lookup (l, st)

Figure 2.5: A functional representation of the store

(* ared * store -> aexp *)
fun contract_ared (PR_REF l, st) = aexp_of_val (lookup (l, st))
| contract_ared (PR_ADD (VNUM n1, VNUM n2), st) = NUM (n1 + n2)
| contract_ared (PR_SUB (VNUM n1, VNUM n2), st) = NUM (n1 - n2)
| contract_ared (PR_MUL (VNUM n1, VNUM n2), st) = NUM (n1 * n2)

(* bred -> bexp *)
fun contract_bred (PR_LEQ (VNUM n1, VNUM n2)) = if n1 <= n2 then TRUE else FALSE
| contract_bred (PR_NOT VTRUE) = FALSE
| contract_bred (PR_NOT VFALSE) = TRUE
| contract_bred (PR_AND (VTRUE, b2)) = b2
| contract_bred (PR_AND (VFALSE, b2)) = FALSE

(* cred * store -> com * store *)
fun contract_cred (PR_SEQ (VSKIP, c2), st) = (c2, st)
| contract_cred (PR_SET (l, v), st) = (SKIP, ASSOC (l, v, st))
| contract_cred (PR_IF (VTRUE, c1, c2), st) = (c1, st)
| contract_cred (PR_IF (VFALSE, c1, c2), st) = (c2, st)
| contract_cred (PR_WHILE (b, c), st) = (IF (b, SEQ (c, WHILE (b, c)), SKIP), st)

Figure 2.6: A functional implementation of the contraction rules

2.4.3 A functional implementation of the reduction semantics

In this section, we give a functional implementation of the reduction semantics of I as
defined in Section 2.3.3. The implementation uses syntactic representations for subtypes
of values and represents each of these subtypes by a distinct data type. By doing so, the
type system proves that if a value is constructed it is indeed a value of the respective syn-
tactic domain. We use fun aexp_of_val (VNUM n) = NUM n to embed numeric values
in numeric expressions. The value of an arithmetic expression is a numeral, the value of
a boolean expression is a representation of a truth value, the value of a command is the
unit of a command, i.e., the skip command. In addition to the subtypes of values, we
define the subtypes of redexes as a data type (Figure 2.4). The store is implemented with
a data type and an auxiliary lookup function which is a total function that looks up the
value at a location (Figure 2.5). Contraction is implemented by one function for each of
the contraction judgments defined over the structure of redexes (Figure 2.6).
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datatype ccont
= C0 (* [] *)
| C1 of ccont * com (* E[_; c2] *)

datatype bcont
= B1 of bcont (* E[not _] *)
| B2 of bcont * bexp (* E[_ and b2] *)
| B3 of ccont * com * com (* E[if _ then c1 else c2] *)

datatype acont
= A1 of acont * aexp (* E[_ + a2] *)
| A2 of acont * aexp (* E[_ - a2] *)
| A3 of acont * aexp (* E[_ * a2] *)
| A4 of aval * acont (* E[v1 + _] *)
| A5 of aval * acont (* E[v1 - _] *)
| A6 of aval * acont (* E[v1 * _] *)
| A7 of bcont * aexp (* E[_ <= a2] *)
| A8 of aval * bcont (* E[v1 <= _] *)
| A9 of loc * ccont (* E[l := _] *)

Figure 2.7: A functional representations of contexts

(* ccont * com -> com *)
fun recompose_ccont (C0, c ) = c
| recompose_ccont (C1 (k, c2), c1) = recompose_ccont (k, SEQ (c1, c2))

(* bcont * bexp -> com *)
fun recompose_bcont (B1 k, b ) = recompose_bcont (k, NOT b)
| recompose_bcont (B2 (k, b2), b1) = recompose_bcont (k, AND (b1, b2))
| recompose_bcont (B3 (k, c1, c2), b ) = recompose_ccont (k, IF (b, c1, c2))

(* acont * aexp -> com *)
fun recompose_acont (A1 (k, a2), a1) = recompose_acont (k, ADD (a1, a2))
| recompose_acont (A2 (k, a2), a1) = recompose_acont (k, SUB (a1, a2))
| recompose_acont (A3 (k, a2), a1) = recompose_acont (k, MUL (a1, a2))
| recompose_acont (A4 (v1, k), a2) = recompose_acont (k, ADD (aexp_of_val v1, a2))
| recompose_acont (A5 (v1, k), a2) = recompose_acont (k, SUB (aexp_of_val v1, a2))
| recompose_acont (A6 (v1, k), a2) = recompose_acont (k, MUL (aexp_of_val v1, a2))
| recompose_acont (A7 (k, a2), a1) = recompose_bcont (k, LEQ (a1, a2))
| recompose_acont (A8 (v1, k), a2) = recompose_bcont (k, LEQ (aexp_of_val v1, a2))
| recompose_acont (A9 (l, k), a ) = recompose_ccont (k, SET (l, a))

Figure 2.8: Recomposition of an expression and its context into a command

The representation of contexts is implemented inside-out (Figure 2.7). By inside-out,
we mean that the outermost data constructor represents the inner-most expression con-
text. Recomposing, or plugging, an expression into a context to construct an expression
thus proceeds by iteratively constructing a larger expression until the context is empty,
i.e., it is the left fold over the data type of contexts (Figure 2.8). Also, in our encoding
we only ever consider the operation of recomposing into a full command, i.e., we always
reconstruct the entire program.

Decomposition is implemented by two functions for each of the syntactic domains. For
arithmetic expressions, decompose_aexp is defined over the structure of arithmetic expres-
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2.4. Representations and implementations

datatype val_or_dec
= VAL of cval (* C = skip *)
| ADEC of ared * acont (* C = E[a] and a is a redex *)
| BDEC of bred * bcont (* C = E[b] and b is a redex *)
| CDEC of cred * ccont (* C = E[c] and c is a redex *)

(* acont * aval -> val_or_dec *)
fun decompose_acont (A1 (k, a2), v1) = decompose_aexp (a2, A4 (v1, k))
| decompose_acont (A2 (k, a2), v1) = decompose_aexp (a2, A5 (v1, k))
| decompose_acont (A3 (k, a2), v1) = decompose_aexp (a2, A6 (v1, k))
| decompose_acont (A4 (v1, k), v2) = ADEC (PR_ADD (v1, v2), k)
| decompose_acont (A5 (v1, k), v2) = ADEC (PR_SUB (v1, v2), k)
| decompose_acont (A6 (v1, k), v2) = ADEC (PR_MUL (v1, v2), k)
| decompose_acont (A7 (k, a2), v1) = decompose_aexp (a2, A8 (v1, k))
| decompose_acont (A8 (v1, k), v2) = BDEC (PR_LEQ (v1, v2), k)
| decompose_acont (A9 (l, k), v ) = CDEC (PR_SET (l, v), k)

(* aexp * acont -> val_or_dec *)
and decompose_aexp (NUM n, k) = decompose_acont (k, VNUM n)
| decompose_aexp (REF l, k) = ADEC (PR_REF l, k)
| decompose_aexp (ADD (a1, a2), k) = decompose_aexp (a1, A1 (k, a2))
| decompose_aexp (SUB (a1, a2), k) = decompose_aexp (a1, A2 (k, a2))
| decompose_aexp (MUL (a1, a2), k) = decompose_aexp (a1, A3 (k, a2))

Figure 2.9: Decomposition of a non-value arithmetic expression
into the next redex and its evaluation context

(* bcont * bval -> val_or_dec *)
fun decompose_bcont (B1 k, v ) = BDEC (PR_NOT v, k)
| decompose_bcont (B2 (k, b2), v1) = BDEC (PR_AND (v1, b2), k)
| decompose_bcont (B3 (k, c1, c2), v ) = CDEC (PR_IF (v, c1, c2), k)

(* bexp * bcont -> val_or_dec *)
fun decompose_bexp (TRUE, k) = decompose_bcont (k, VTRUE)
| decompose_bexp (FALSE, k) = decompose_bcont (k, VFALSE)
| decompose_bexp (LEQ (a1, a2), k) = decompose_aexp (a1, A7 (k, a2))
| decompose_bexp (NOT b, k) = decompose_bexp (b, B1 k)
| decompose_bexp (AND (b1, b2), k) = decompose_bexp (b1, B2 (k, b2))

Figure 2.10: Decomposition of a non-value boolean expression
into the next redex and its evaluation context

sions and decompose_acont is defined over the structure of arithmetic expression contexts
(Figure 2.9). Given an arithmetic expression and the context of the expression, these
functions find the next redex and its reduction context. Likewise, the decomposition of
boolean expressions is defined by decompose_bexp and decompose_bcont (Figure 2.10),
and the decomposition of commands is defined by decompose_com and decompose_ccont
(Figure 2.11).

One-step reduction is implemented as the composition of decomposition, contraction
and recomposition (Figure 2.12). And reduction-based evaluation as the iteration of one-
step reduction (Figure 2.13).
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(* ccont * cval -> val_or_dec *)
fun decompose_ccont (C0, v ) = VAL v
| decompose_ccont (C1 (k, c2), v1) = CDEC (PR_SEQ (v1, c2), k)

(* com * ccont -> val_or_dec *)
fun decompose_com (SKIP, k) = decompose_ccont (k, VSKIP)
| decompose_com (SEQ (c1, c2), k) = decompose_com (c1, C1 (k, c2))
| decompose_com (SET (l, a), k) = decompose_aexp (a, A9 (l, k))
| decompose_com (IF (b, c1, c2), k) = decompose_bexp (b, B3 (k, c1, c2))
| decompose_com (WHILE (b, c), k) = CDEC (PR_WHILE (b, c), k)

(* com -> val_or_dec *)
fun decompose t = decompose_com (t, C0)

Figure 2.11: Decomposition of a non-value command
into the next redex and its evaluation context

(* com * state -> com * state *)
fun reduce (c, st)

= (case decompose c
of VAL v => (com_of_val v, st)
| ADEC (r, E) => (recompose_acont (E, contract_ared (r, st)), st)
| BDEC (r, E) => (recompose_bcont (E, contract_bred r), st)
| CDEC (r, E) => let val (c’, st’) = contract_cred (r, st)

in (recompose_ccont (E, c’), st’)
end)

Figure 2.12: A functional implementation of one-step reduction

(* val_or_dec * store -> store *)
fun iterate (VAL VSKIP, st)

= st
| iterate (ADEC (r, E), st)
= iterate (decompose (recompose_acont (E, contract_ared (r, st))), st)

| iterate (BDEC (r, E), st)
= iterate (decompose (recompose_bcont (E, contract_bred r)), st)

| iterate (CDEC (r, E), st)
= let val (c’, st’) = contract_cred (r, st)
in iterate (decompose (recompose_ccont (E, c’)), st’)
end

(* com -> store *)
fun eval c = iterate (decompose c, EMPTY)

Figure 2.13: A functional implementation of reduction-based evaluation

Each component in this implementation can be shown adequate by structural induc-
tion. The proofs are straightforward because all of the data representations are first order,
i.e., there are no local forms of binding, and the judgments of the reduction semantics are
deterministic and total save the final evaluation judgment.
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Chapter 3

A functional correspondence:

from higher-order interpreter

to abstract machine

The functional correspondence makes it possible to inter-derive a higher-order and com-
positional interpreter and the functional implementation of an abstract machine. This
chapter describes each step of the functional correspondence as it applies to the defini-
tional interpreters for I introduced in Chapter 2. Our starting point is the functional
implementation of the direct semantics defined in Section 2.4.2. The first step is the
continuation-passing style transformation that given an implementation of the semantics
in direct style will produce an implementation of the semantics in continuation-passing
style. The second step is defunctionalization that given an implementation of the seman-
tics in continuation-passing style, i.e., an implementation using higher-order functions,
will produce a first-order implementation in the style of an abstract machine, i.e., in the
form of a state-transition system. Each of these programs are obtained by mechanical
and fully-correct program transformations and represent different encodings of the same
computation.

3.1 The CPS transformation:

from direct-style to continuation-style

The list of co-discoverers of continuations, CPS transformations, and control operators is
long and the list of their uses is even longer. We refer the interested reader to the historical
notes by Reynolds [177] and Landin [133] and to Danvy’s doctorate [60].

Danvy summarizes the transformation into continuation-passing style in three steps
[55]: 1. name all intermediate results, 2. sequentialize these results, and 3. pass an extra
argument to each call that will map these named and sequentialized results to the final
result.

Consider the evaluation function for arithmetic expressions, here using ML’s notation
for curried arguments:
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3. A functional correspondence: from definitional interpreter to abstract machine

(* aexp -> state -> int *)
fun aeval (NUM n) s = refl n
| aeval (REF l) s = s l
| aeval (ADD (a1, a2)) s = aeval a1 s + aeval a2 s
| aeval (SUB (a1, a2)) s = aeval a1 s - aeval a2 s
| aeval (MUL (a1, a2)) s = aeval a1 s * aeval a2 s

Let us CPS transform this function in three steps:

1. We name intermediate results with let-expressions:

(* aexp -> state -> int *)
fun aeval_1 (NUM n) s

= let val v = refl n in v end
| aeval_1 (REF l) s
= let val v = s l in v end

| aeval_1 (ADD (a1, a2)) s
= let val v3 = (let val v1 = aeval_1 a1 s in v1 end) +

(let val v2 = aeval_1 a2 s in v2 end)
in v3 end

| aeval_1 (SUB (a1, a2)) s
= let val v3 = (let val v1 = aeval_1 a1 s in v1 end) -

(let val v2 = aeval_1 a2 s in v2 end)
in v3 end

| aeval_1 (MUL (a1, a2)) s
= let val v3 = (let val v1 = aeval_1 a1 s in v1 end) *

(let val v2 = aeval_1 a2 s in v2 end)
in v3 end

The numeral case has one intermediate result named v which is the integer reflec-
tion of the numeral. The dereferencing case has one intermediate result named v
which is the result of looking up the location in the store. This result is the final
result. The arithmetic operators have three intermediate results. The first interme-
diate result named v1 is the result of the recursive call on the first subexpression.
The second intermediate result named v2 is the result of the recursive on the second
subexpression. The third intermediate result named v3 is the result of the arithmetic
operator applied to the previous two results. The third intermediate result is the
final result.

2. We sequentialize these let-expressions:

(* aexp -> state -> int *)
fun aeval_2 (NUM n) s

= let val v = refl n in v end
| aeval_2 (REF l) s
= let val v = s l in v end

| aeval_2 (ADD (a1, a2)) s
= let val v1 = aeval_2 a1 s
in let val v2 = aeval_2 a2 s

in let val v3 = v1 + v2
in v3 end end end

| aeval_2 (SUB (a1, a2)) s
= let val v1 = aeval_2 a1 s
in let val v2 = aeval_2 a2 s

in let val v3 = v1 - v2
in v3 end end end

| aeval_2 (MUL (a1, a2)) s
= let val v1 = aeval_2 a1 s
in let val v2 = aeval_2 a2 s
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3.1. The CPS transformation: from direct-style to continuation-style

in let val v3 = v1 * v2
in v3 end end end

For this program, there are two possible choices when sequentializing: either v1
comes before v2 or v2 comes before v1. There is no choice for v3 since the com-
putation producing the named result v3 depends on the named results v1 and v2.
This step results in a computation in ‘monadic normal form’ [93, 111, 149].

3. Finally, we introduce continuations as an extra functional argument to each func-
tion. These continuation functions map the named result to the final value:

type ’a state_cps = loc -> (int -> ’a) -> ’a

fun refl_cps v k = k (refl v)
fun add_cps v1 v2 k = k (v1 + v2)
fun sub_cps v1 v2 k = k (v1 - v2)
fun mul_cps v1 v2 k = k (v1 * v2)

(* aexp -> ’a state_cps -> (int -> ’a) -> ’a *)
fun aeval_3 (NUM n) s k

= refl_cps n (fn v => k v)
| aeval_3 (REF l) s k
= s l (fn v => k v)

| aeval_3 (ADD (a1, a2)) s k
= aeval_3 a1 s (fn v1 =>

aeval_3 a2 s (fn v2 =>
add_cps v1 v2 (fn v3 =>
k v3)))

| aeval_3 (SUB (a1, a2)) s k
= aeval_3 a1 s (fn v1 =>

aeval_3 a2 s (fn v2 =>
sub_cps v1 v2 (fn v3 =>
k v3)))

| aeval_3 (MUL (a1, a2)) s k
= aeval_3 a1 s (fn v1 =>

aeval_3 a2 s (fn v2 =>
mul_cps v1 v2 (fn v3 =>
k v3)))

The result of the CPS transformation is an evaluation function in continuation-passing
style: all functions take a continuation and all calls are in tail position, i.e., each call is
locally the last thing to do.

When CPS transforming a function, we will often perform two additional transforma-
tions in passing:

1. The continuation k arising from the CPS transformation is a value and thus cannot
diverge, i.e., it is a trivial expression in the terminology of Reynolds [176]. There-
fore, the expression fn v => k v is functionally equivalent to its η-reduction k:

(* aexp -> state_cps -> (int -> ’a) -> ’a *)
fun aeval_4 (NUM n) s k

= refl_cps n k
| aeval_4 (REF l) s k
= s l k

| aeval_4 (ADD (a1, a2)) s k
= aeval_4 a1 s (fn v1 =>

aeval_4 a2 s (fn v2 =>
add_cps v1 v2 k))
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3. A functional correspondence: from definitional interpreter to abstract machine

| aeval_4 (SUB (a1, a2)) s k
= aeval_4 a1 s (fn v1 =>

aeval_4 a2 s (fn v2 =>
sub_cps v1 v2 k))

| aeval_4 (MUL (a1, a2)) s k
= aeval_4 a1 s (fn v1 =>

aeval_4 a2 s (fn v2 =>
mul_cps v1 v2 k))

2. Total and effect-free functions can be left in direct-style without affecting the cor-
rectness of the transformation. Typically, we will leave ‘primitive’ operations, e.g.,
addition, subtraction and multiplication and in this case our encoding of state, in
direct-style:

(* aexp -> state -> (int -> ’a) -> ’a *)
fun aeval_5 (NUM n) s k

= k (refl n)
| aeval_5 (REF l) s k
= k (s l)

| aeval_5 (ADD (a1, a2)) s k
= aeval_5 a1 s (fn v1 =>

aeval_5 a2 s (fn v2 =>
k (v1 + v2)))

| aeval_5 (SUB (a1, a2)) s k
= aeval_5 a1 s (fn v1 =>

aeval_5 a2 s (fn v2 =>
k (v1 - v2)))

| aeval_5 (MUL (a1, a2)) s k
= aeval_5 a1 s (fn v1 =>

aeval_5 a2 s (fn v2 =>
k (v1 * v2)))

This CPS transformation is but one among many. Each choice of sequentialization gives
rise to a CPS transformation. Here we choose to eagerly evaluate subexpressions from
left to right. This happens to be the evaluation order of Standard ML, and is thus a fully
correct program transformation on any program in Standard ML. Also, we have used the
same eager and left-to-right evaluation order consistently throughout Chapter 2. The λ-
calculus has two canonical evaluation orders: call by value and call by name. Given a
direct semantics of the λ-calculus these evaluation orders can be realized respectively the
call-by-value and the call-by-name CPS transformations [92, 169].

Having fixed the evaluation order by means of a CPS transformation, we change the
encoding of state to be in state-passing style, in accordance with Section 2.2.1. The passing
of state inherits the order from the CPS transformation and is fully η-reduced, i.e., we
simply swap the order of the formal parameters, let the continuation take both the integer
result and the threaded state, and finally η-reduce the state throughout:

(* aexp -> (int -> state -> ’a) -> state -> ’a *)
fun aeval_6 (NUM n) k

= k (refl n)
| aeval_6 (REF l) k
= (fn s => k (s l) s)

| aeval_6 (ADD (a1, a2)) k
= aeval_6 a1 (fn v1 =>

aeval_6 a2 (fn v2 =>
k (v1 + v2)))

| aeval_6 (SUB (a1, a2)) k
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3.1. The CPS transformation: from direct-style to continuation-style

= aeval_6 a1 (fn v1 =>
aeval_6 a2 (fn v2 =>
k (v1 - v2)))

| aeval_6 (MUL (a1, a2)) k
= aeval_6 a1 (fn v1 =>

aeval_6 a2 (fn v2 =>
k (v1 * v2)))

Completing this transformation on the evaluation functions for boolean expressions
and commands yields the definitional interpreter in CPS displayed in Figure 3.1. In sum-
mary, the evaluation function for arithmetic expressions in state-passing style takes an
arithmetic expression and a state (in curried form) and produces an integer and the
threaded state. Thus the continuation is a function from results, here integers and threaded
states, to some answer type, here denoted by the type variable ’a. Likewise, the contin-
uation for boolean expressions is a function from boolean values and threaded states to
answers. The continuation for commands is a function from states, which is the only result
produced by the direct-style denotation of commands, to answers.

This definitional interpreter in CPS is a correct implementation of the direct seman-
tics in Section 2.2.1 because we have mechanically derived the implementation directly
from the implementation of the direct style semantics. Furthermore, this definitional in-
terpreter in CPS is actually an implementation of the continuation semantics and can be
transliterated directly from definitions in Section 2.2.2.

type ’a acont = int -> state -> ’a
type ’a bcont = bool -> state -> ’a
type ’a ccont = state -> ’a

(* aexp -> ’a acont -> state -> ’a *)
fun aeval (NUM n) k = k (refl n)
| aeval (REF l) k = (fn s => k (s l) s)
| aeval (ADD (a1, a2)) k = aeval a1 (fn v1 => aeval a2 (fn v2 => k (v1 + v2)))
| aeval (SUB (a1, a2)) k = aeval a1 (fn v1 => aeval a2 (fn v2 => k (v1 - v2)))
| aeval (MUL (a1, a2)) k = aeval a1 (fn v1 => aeval a2 (fn v2 => k (v1 * v2)))

(* bexp -> ’a bcont -> state -> ’a *)
fun beval (TRUE) k = k true
| beval (FALSE) k = k false
| beval (LEQ (a1, a2)) k = aeval a1 (fn v1 => aeval a2 (fn v2 => k (v1 <= v2)))
| beval (NOT b) k = beval b (fn v => k (not v))
| beval (AND (b1, b2)) k = beval b1 (fn v => if v then beval b2 k else k false)

(* com -> ’a ccont -> state -> ’a *)
fun ceval (SKIP) k = k
| ceval (SEQ (c1, c2)) k = ceval c1 (ceval c2 k)
| ceval (SET (l, a)) k = aeval a (fn v => fn s => k (fn l’ => if l = l’ then v else s l’))
| ceval (IF (b, c1, c2)) k = beval b (fn v => if v then ceval c1 k else ceval c2 k)
| ceval (WHILE (b, c)) k = let fun f k = beval b (fn v => if v then ceval c (f k) else k)

in f k end

(* com -> state *)
fun eval c = ceval c (fn s => s) (fn l => 0)

Figure 3.1: A definitional interpreter for I in continuation-passing style
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3. A functional correspondence: from definitional interpreter to abstract machine

3.2 Defunctionalization:

from higher order to first order

The defunctionalization transformation was introduced by Reynolds [176] as a method
for replacing the use of higher-order functions by a first-order representation. Defunction-
alization is a whole-program transformation, and works by replacing each instantiation of
a higher-order function by the allocation of a first-order representation of its environment
and each application of a higher-order function by the invocation of an ‘apply’ function to
the first-order representation.

We start by defunctionalizing the representation of state. The definitional interpreter
of Figure 3.1 constructs functions with the state type at two distinct sites. We therefore
partition the function space into two summands:

0. The initial state, the constant function mapping any location to the numeric repre-
sentation of zero, which has no free variables.

1. The functional extension of state, which has three free variables: the location l, the
value v, and the previous state s’.

Defunctionalizing the function type of state therefore gives rise to (1) the following data
type:

datatype state
= S0
| S1 of loc * int * state

and (2) the following ‘apply’ function dispatching over the state data type (here renaming
s’ by s):

fun apply (S0, l ) = 0
| apply (S1 (l, v, s), l’) = if l = l’ then v else apply (s, l’)

Renaming S0 by EMPTY, S1 by ASSOC and apply by lookup, this first-order representation
of the state coincides with our representation of the store and its lookup judgment for the
operational semantics (Figure 2.5).

Defunctionalizing the state of the direct-semantics implementation into a store yields
an implementation of the big-step operational semantics. Here all structures are first-order
and adequately encode the evaluation judgments of Section 2.3.1.

Returning to the derived implementation of the continuation semantics, we can de-
functionalize the functions spaces of continuations. Thus for each type of continuation
we introduce a data type and an ‘apply’ function dispatching over the data type. We reuse
the same name for both the data type and the function (here acont, bcont, and ccont).
As a final step, we η-expand and uncurry the state throughout. The result is the first-order
definitional interpreter in Figure 3.2 and Figure 3.3 which has the form of an abstract ma-
chine. The machine has six transition functions: aeval, acont, beval, bcont, ceval, and
ccont, and three data types implementing the machine stack: acont, bcont, and ccont.
For example, the evaluation of an addition proceeds as follows:

1. In the ADD case of aeval the machine pushes a ‘left-addition’ stack frame, A1, con-
taining a2 onto the stack and continues evaluation of a1.

2. In the A1 case of acont the machine has evaluated to a value, v1, and has a ‘left-
addition’ frame containing a2 on the top of stack. It replaces the top of stack by a
‘right-addition’ frame, A4, containing v1 and continues evaluation of a2.
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3.3. Summary and conclusion

datatype ccont
= C0 (* [] *)
| C1 of ccont * com (* E[_; c] *)
| C2 of ccont * bexp * com (* E[_; while b c] *)

datatype bcont
= B1 of bcont (* E[not _] *)
| B2 of bcont * bexp (* E[_ and b2] *)
| B3 of ccont * com * com (* E[if _ then c1 else c2] *)
| B4 of ccont * bexp * com (* E[if _ then (c; while b c) else skip] *)

datatype acont
= A1 of acont * aexp (* E[_ + a2] *)
| A2 of acont * aexp (* E[_ - a2] *)
| A3 of acont * aexp (* E[_ * a2] *)
| A4 of int * acont (* E[v1 + _] *)
| A5 of int * acont (* E[v1 - _] *)
| A6 of int * acont (* E[v1 * _] *)
| A7 of bcont * aexp (* E[_ <= a2] *)
| A8 of int * bcont (* E[v1 <= _] *)
| A9 of loc * ccont (* E[l := _] *)

Figure 3.2: A first-order definitional interpreter for I : contexts

3. In the A4 case of acont the machine has evaluation to a value, v2, and has a ‘right-
addition’ frame containing v1 on the top of stack. It computes the sum of the values
v1 and v2, and continues evaluation with this value and the rest of the stack.

This abstract machine is a correct implementation of the continuation semantics and of the
direct semantics because it has been derived using fully-correct program transformations.

3.3 Summary and conclusion

Starting from the implementation of a direct semantics, we have mechanically derived
an abstract machine for the same language. The structural coincidence between the im-
plicit context in a direct semantics, the explicit continuation in a continuation semantics,
and the first-order stack in an abstract machine plays the key rôle in this connection. In-
deed, as remarked by Stoy [201, Page 253], an uncurried reading of the state-passing
continuation semantics (Figure 3.1) resembles the state of some interpreter defined as
a state transition system, e.g., Landin’s sharing machine [131]. Reynolds noted that af-
ter defunctionalization this interpreter has a “machine-like character” and implements a
“state-transition machine” [176, Section 7 and 8], or in our terminology, an abstract ma-
chine.

3.4 The functional correspondence in perspective

The development of the functional correspondence followed an investigation of defunc-
tionalization by Danvy and Nielsen [70], which prompted the question as to whether
Landin’s SECD machine was in defunctionalized form [58]. Indeed, the SECD machine
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3. A functional correspondence: from definitional interpreter to abstract machine

(* aexp * acont * state -> state *)
fun aeval (NUM n, k, s) = acont (k, refl n, s)
| aeval (REF l, k, s) = acont (k, apply (s, l), s)
| aeval (ADD (a1, a2), k, s) = aeval (a1, A1 (k, a2), s)
| aeval (SUB (a1, a2), k, s) = aeval (a1, A2 (k, a2), s)
| aeval (MUL (a1, a2), k, s) = aeval (a1, A3 (k, a2), s)

(* acont * int * state -> state *)
and acont (A1 (k, a2), v1, s) = aeval (a2, A4 (v1, k), s)
| acont (A2 (k, a2), v1, s) = aeval (a2, A5 (v1, k), s)
| acont (A3 (k, a2), v1, s) = aeval (a2, A6 (v1, k), s)
| acont (A4 (v1, k), v2, s) = acont (k, v1 + v2, s)
| acont (A5 (v1, k), v2, s) = acont (k, v1 - v2, s)
| acont (A6 (v1, k), v2, s) = acont (k, v1 * v2, s)
| acont (A7 (k, a2), v1, s) = aeval (a2, A8 (v1, k), s)
| acont (A8 (v1, k), v2, s) = bcont (k, v1 <= v2, s)
| acont (A9 (l, k), v, s) = ccont (k, S1 (l, v, s))

(* bexp * bcont * state -> state *)
and beval (TRUE, k, s) = bcont (k, true, s)
| beval (FALSE, k, s) = bcont (k, false, s)
| beval (LEQ (a1, a2), k, s) = aeval (a1, A7 (k, a2), s)
| beval (NOT b, k, s) = beval (b, B1 k, s)
| beval (AND (b1, b2), k, s) = beval (b1, B2 (k, b2), s)

(* bcont * bool * state -> state *)
and bcont (B1 k, v, s) = bcont (k, not v, s)
| bcont (B2 (k, b2), v, s) = if v then beval (b2, k, s) else bcont (k, false, s)
| bcont (B3 (k, c1, c2), v, s) = if v then ceval (c1, k, s) else ceval (c2, k, s)
| bcont (B4 (k, b, c), v, s) = if v then ceval (c, C2 (k, b, c), s) else ccont (k, s)

(* com * ccont * state -> state *)
and ceval (SKIP, k, s) = ccont (k, s)
| ceval (SEQ (c1, c2), k, s) = ceval (c1, C1 (k, c2), s)
| ceval (SET (l, a), k, s) = aeval (a, A9 (l, k), s)
| ceval (IF (b, c1, c2), k, s) = beval (b, B3 (k, c1, c2), s)
| ceval (WHILE (b, c), k, s) = beval (b, B4 (k, b, c), s)

(* ccont * state -> state *)
and ccont (C0, s) = s
| ccont (C1 (k, c2), s) = ceval (c2, k, s)
| ccont (C2 (k, b, c), s) = beval (b, B4 (k, b, c), s)

(* com -> state *)
fun eval c = ceval (c, C0, S0)

Figure 3.3: A first-order definitional interpreter for I : evaluation

could be put in defunctionalized form and be understood by mapping it back to direct-
style by the inverse transformations of defunctionalization [69] and the CPS transforma-
tion [56]. This ‘backward’ correspondence from abstract machine to direct-style using the
left inverse of defunctionalization and CPS transformation can be found in ‘forward’ form
in Reynolds’s seminal paper on definitional interpreters [176]. Reynolds investigated the
properties of functional interpreters by means of program transformations and, in retro-
spect, spelled out a generic correspondence between higher-order algorithms and first-
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order transition systems by means of CPS transformation and defunctionalization. This
functional correspondence has been shown to be widely applicable and to provide instru-
mental guidelines to construct new semantic artifacts and to establish the equivalence of
existing ones [62]:

• Ager, Biernacki, Danvy, and Midtgaard [5] apply the correspondence to standard in-
terpreters and abstract machines. Starting from a compositional call-by-name inter-
preter they derive Krivine’s machine [127, 128], which in retrospect was originally
derived by Schmidt [187]. They inter-derive a compositional call-by-value inter-
preter with Felleisen and Friedman’s CEK machine [87], as originally derived by
Reynolds [176]. In addition they derive a higher-order interpreter for each of Han-
nan and Miller’s CLS machine [106], Landin’s SECD machine [131], and Cousineau
et al.’s CAM machine [48].

• Danvy [57] factored the compositional interpreters into the same evaluation-order-
dependent one, and used the call-by-value CPS transformation to derive the CEK
machine and the call-by-name CPS transformation to derive the Krivine machine.
This factoring through the CPS transformations followed by defunctionalization elu-
cidated the structural coincidence between the implicit contexts in a direct-style in-
terpreter, the continuations in continuation-passing interpreter, and the stack in an
abstract machine.

• Ager, Danvy, and Midtgaard [7] extend the correspondence to store-based call-by-
need evaluation. Starting from a call-by-need interpreter that threads a store and
uses updatable thunks for sharing, they derive a lazy abstract machine, in particular,
they derive Crégut’s lazy variant of Krivine’s machine [51].

• Ager, Danvy, and Midtgaard [8] extend the correspondence to account for impure
languages. Starting from a monadic interpreter they derive an abstract machines ac-
counting for computational effects. This correspondence accounts for effects rang-
ing from simple error handling to tail-recursive stack inspection and it provides a
framework for combining monadic effects and subsequently deriving an execution
environment in the form of an abstract machine.

• Biernacka, Biernacki, and Danvy [30] extend the correspondence to account for
delimited control in the CPS hierarchy. For a given level of the CPS hierarchy, n,
they construct a continuation-passing interpreter with n+1 layers of continuations
and derive an abstract machine with n+ 1 control stacks accounting for the family
of control operators shiftn and resetn.

• Danvy and Millikin [68] give a rational deconstruction of Landin’s J operator for the
SECD machine. Their deconstruction shows how the J operator is specified in the
CPS hierarchy [64], and how it relates to other uses of continuations and control
operators. Based on this deconstruction, they argue for the inclusion of Landin to
the list of co-discoverers of continuations.

• Biernacki and Danvy [32] extend the correspondence to connect logical inference
engines for Prolog with cut. Starting from a continuation-passing interpreter they
derive an abstract machine and give a direct-style interpreter using delimited con-
trol operators. These derivations pointed our differences in existing accounts of
the same logical system [37], namely that some where properly tail recursive while
others where not.
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3. A functional correspondence: from definitional interpreter to abstract machine

• Danvy and Johannsen [65, 119] extend the correspondence to inter-derive a natural
semantics and an abstract machine with an explicit-substitution variant of Abadi and
Cardelli’s object calculus [1].

• Danvy [63] inter-derived several of the semantic artifacts for the Scheme program-
ming language. In particular, he shows consistency between various specifications
of call/cc by inter-deriving two abstract machines, a natural semantic, and a de-
notational semantics, based on Clinger’s abstract machine for Core Scheme [47].

• Pirog and Biernacki [167] mechanized the derivation of the STG machine [160] in
the Coq proof assistant.

• Anton and Thiemann [9, 10] extend the correspondence to derive a type system
and an implementation for coroutines.

• Sergey and Clarke [192–194] extend the correspondence to inter-derive type check-
ing algorithms. In particular, they connect reduction-based type checking [129]
with traditional recursive-descent type checking [166].

• Independently, Puech [175] also uses the correspondence to inter-derive recursive
and iterative algorithms for bidirectional type checking.

• Kerneis [124] uses CPS and defunctionalization to compile lightweight threads into
event-based code in an imperative setting.

• Prior to the identification of this correspondence, Graunke et al. [102] used the
CPS transformation and defunctionalization to compile higher-order programs into
first-order programs for web programming.

In this dissertation, the techniques from the functional correspondence are employed in
several places:

• Chapter 5 develops a prequel to a reduction semantics based on the functional cor-
respondence. Starting from a big-step specification of a reduction strategy in the
form of a compositional search function, we derive both the grammar of reduction
contexts and the decomposition function of a reduction semantics. From this de-
rived formulation the syntactic correspondence can be applied to obtain an abstract
machine (which we later detail in Section 4.1).

• Chapter 6 extends the functional correspondence to inter-derive small-step and big-
step normalization functions for boolean-propositional formulas. We inter-derive
conjunctive normalization functions in the form of an abstract machine with delim-
ited stacks, a compositional interpreter with delimited continuations, and a direct-
style interpreter using the control operators shift and reset.

• Chapter 7 extends the functional correspondence to connect store-less accounts of
call-by-need evaluation. We use the correspondence to inter-derive a store-less ab-
stract machine with a store-less natural semantics and a higher-order evaluation
function in the style of Cartwright and Felleisen’s extensible denotational seman-
tics [41]. This higher-order evaluation function makes use of delimited continua-
tions and can be encoded using state or delimited control.
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• Chapter 8 gives a synthetic account of call-by-need evaluation. It provides bisim-
ulations for a series of reduction semantics for call-by-need evaluation spanning
from the storeless call-by-need calculus of Ariola-al et al. [15] to a state-based re-
duction semantics using a store and updateable thunks. Each of these reduction
semantics is then inter-derived with their corresponding abstract machine and nat-
ural semantics. Together, the bisimulations and inter-derivations give a constructive
connection of Crégut’s original lazy Krivine machine [51] with Ariola et al.’s call-
by-need λ-calculus, and with Launchbury’s natural semantics for call by need. In
addition, the synthetic account systematically maps out the “spaces between” the
existing specifications.

• Chapter 9 investigates whether Turner’s reduction machine can be put into defunc-
tionalization form and gives an example of a big-step graph evaluator as inter-
derived by the functional correspondence.

• Chapter 11 provides a logical counterpart to the functional correspondence. Spec-
ifications are given as encodings in a logical framework. We then interpret these
specifications as logic programs governed by proof search which gives them an oper-
ational reading. We identify Horn-clause logic programs a an adequate specification
of a natural semantics, ordered-logic programs as an adequate specification of ab-
stract machines, and provide a logical transformation from the first to the second.
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Chapter 4

A syntactic correspondence:

from reduction semantics

to abstract machine

The syntactic correspondence makes it possible to inter-derive the functional implemen-
tation of a reduction semantics and the functional implementation of an abstract ma-
chine. This chapter describes each step of the syntactic correspondence as it applies to
the reduction semantics for I introduced in Chapter 2. Our starting point is the func-
tional implementation of the reduction semantics defined in Section 2.4.3. We show how
to derive the grammar of reduction contexts and the decomposition function of the re-
duction semantics from a specification of its reduction strategy (Section 4.1). Next, we
refocus the reduction-based evaluation of the reduction semantics into a reduction-free
evaluation that implements an abstract machine (Section 4.2). This abstract machine is
implemented in small-steps which we transform to an implementation using one big-step
with lightweight fusion by fixed-point promotion (Section 4.3). We then hereditary com-
press corridor transitions yielding a more efficient abstract machine (Section 4.4). The
final result of these transformations is the same implementation of an abstract machine
as derived in Chapter 3.

4.1 A prequel to reduction semantics:

from search to decompose

This section presents our prequel to reduction semantics. This prequel defines a method to
derive a reduction semantics from a big-step specification of a reduction strategy. Specif-
ically, this specification is given as a total and compositional function that searches for
the next redex in an expression, i.e., the search function is a big-step specification. The
method then derives an implementation of the decompose function that incrementally
performs this search while simultaneously constructing the current context of the search,
i.e., the derived decompose function is a small-step specification. In effect, we use the
functional correspondence to obtain a small-step implementation of the big-step speci-

51



4. A syntactic correspondence: from reduction semantics to abstract machine

fication. The defunctionalized continuations coincide with the reduction contexts of a
reduction semantics.

This prequel has been developed jointly with Olivier Danvy and Jacob Johannsen [76].
A detailed account of the prequel is given in Chapter 5. An extended version of our
published work appears in Chapter 6. In addition, the prequel is applied explicitly in
deriving a graph reduction machine (Chapter 9) and can be applied to our other work on
syntactic theories for graph reduction (Chapter 10) and also to our work on call-by-need
evaluation (Chapter 7 and Chapter 8).

4.1.1 Reduction strategy

The specification of our reduction strategy is given by three search functions defined com-
positionally over the structure of the three syntactic domains. The search functions map
a reducible expression to the next redex according to the strategy and a non-reducible
expression to its value representation.

For arithmetic expressions, the data type aval_or_red represents the sum type of val-
ues and redexes returned by the search function search_aexp:

datatype aval_or_red
= AVAL of aval
| AREDA of ared

(* aexp -> aval_or_red *)
fun search_aexp (NUM n)

= AVAL (VNUM n)
| search_aexp (REF l)
= AREDA (PR_REF l)

| search_aexp (ADD (a1, a2))
= (case search_aexp a1

of AVAL v1
=> (case search_aexp a2

of AVAL v2
=> AREDA (PR_ADD (v1, v2))

| AREDA r
=> AREDA r)

| AREDA r
=> AREDA r)

| search_aexp (SUB (a1, a2))
= (case search_aexp a1

of AVAL v1
=> (case search_aexp a2

of AVAL v2
=> AREDA (PR_SUB (v1, v2))

| AREDA r
=> AREDA r)

| AREDA r
=> AREDA r)

| search_aexp (MUL (a1, a2))
= (case search_aexp a1

of AVAL v1
=> (case search_aexp a2

of AVAL v2
=> AREDA (PR_MUL (v1, v2))

| AREDA r
=> AREDA r)

| AREDA r
=> AREDA r)
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4.1. A prequel to reduction semantics: from search to decompose

This function searches for the next redex in an arithmetic expression from left to right.
Any redex found in a sub-expression is mapped to a redex of the composite expression:

For boolean expressions, the data type bval_or_red represents the sum type of values
and redexes returned by the search function search_bexp:

datatype bval_or_red
= BVAL of bval
| BREDA of ared
| BREDB of bred

(* bexp -> bval_or_red *)
fun search_bexp TRUE

= BVAL VTRUE
| search_bexp FALSE
= BVAL VFALSE

| search_bexp (LEQ (a1, a2))
= (case search_aexp a1

of AVAL v1
=> (case search_aexp a2

of AVAL v2
=> BREDB (PR_LEQ (v1, v2))

| AREDA r
=> BREDA r)

| AREDA r
=> BREDA r)

| search_bexp (NOT b)
= (case search_bexp b

of BVAL v
=> BREDB (PR_NOT v)

| BREDA r
=> BREDA r

| BREDB r
=> BREDB r)

| search_bexp (AND (b1, b2))
= (case search_bexp b1

of BVAL v1
=> BREDB (PR_AND (v1, b2))

| BREDA r
=> BREDA r

| BREDB r
=> BREDB r)

This function searches for the next redex in a boolean expression from left to right and in
the case of the boolean-and expression only in the left sub-expression. Any redex found in
a sub-expression is mapped to a redex of the composite expression. A redex can be either
a reducible arithmetic expression or a reducible boolean expression.

For commands, the data type cval_or_red represents the sum type of values and re-
dexes returned by the search function search_cexp:

datatype cval_or_red
= CVAL of cval
| CREDA of ared
| CREDB of bred
| CREDC of cred

(* com -> cval_or_red *)
fun search_com SKIP

= CVAL VSKIP
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4. A syntactic correspondence: from reduction semantics to abstract machine

| search_com (SEQ (c1, c2))
= (case search_com c1

of CVAL v1
=> CREDC (PR_SEQ (v1, c2))

| CREDA r
=> CREDA r

| CREDB r
=> CREDB r

| CREDC r
=> CREDC r)

| search_com (SET (l, a))
= (case search_aexp a

of AVAL v
=> CREDC (PR_SET (l, v))

| AREDA r
=> CREDA r)

| search_com (IF (b, c1, c2))
= (case search_bexp b

of BVAL v
=> CREDC (PR_IF (v, c1, c2))

| BREDA r
=> CREDA r

| BREDB r
=> CREDB r)

| search_com (WHILE (b, c))
= CREDC (PR_WHILE (b, c))

Likewise, this function searches for the next redex in commands. Any redex found in a
sub-expression or sub-command is mapped to a redex of the composite command. Here
a redex can either by a reducible arithmetic expression, a reducible boolean expression,
or a reducible command.

The search for the next redex of a program is the search for the next redex in a com-
mand:

(* com -> cval_or_red *)
fun search t = search_com t

4.1.2 CPS transforming the search functions

Next we CPS transform the search functions, as described in Section 3.1. The transfor-
mation of search_aexp is displayed in Figure 4.1. We can simplify the CPS-transformed
functions to directly return a redex instead of having it “bubble up” during search. The di-
rect return of a final value is achieved by discarding the continuation the same way as we
did for errors in Section 2.2.2. Thus we fix the answer type, denoted by the type variable
’a in the ML code, to be either a command value or one of the three redexes. If the result
is a redex, we also pair it with its continuation, which, as we will see shortly, encodes the
reduction context of the redex. Thus the type of final results is:

datatype cval_or_red
= CVAL of cval
| CREDA of ared * acont
| CREDB of bred * bcont
| CREDC of cred * ccont

withtype acont = aval -> cval_or_red
and bcont = bval -> cval_or_red
and ccont = cval -> cval_or_red
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(* aexp * (aval_or_red -> ’a) -> ’a *)
fun search_aexp (NUM n, k)

= k (AVAL (VNUM n))
| search_aexp (REF l, k)
= k (AREDA (PR_REF l))

| search_aexp (ADD (a1, a2), k)
= search_aexp (a1,

fn AVAL v1
=> search_aexp (a2,

fn AVAL v2
=> k (AREDA (PR_ADD (v1, v2)))

| AREDA r
=> k (AREDA r))

| AREDA r
=> k (AREDA r))

| search_aexp (SUB (a1, a2), k)
= search_aexp (a1,

fn AVAL v1
=> search_aexp (a2,

fn AVAL v2
=> k (AREDA (PR_SUB (v1, v2)))

| AREDA r
=> k (AREDA r))

| AREDA r
=> k (AREDA r))

| search_aexp (MUL (a1, a2), k)
= search_aexp (a1,

fn AVAL v1
=> search_aexp (a2,

fn AVAL v2
=> k (AREDA (PR_MUL (v1, v2)))

| AREDA r
=> k (AREDA r))

| AREDA r
=> k (AREDA r))

Figure 4.1: The CPS-transformed search function for arithmetic expressions

Because redexes are returned directly, only the respective values are passed to contin-
uations. Thus, when searching an arithmetic expression, the type of its continuation is
aval -> cval_or_red. The simplification of search_aexp to directly return redexes is
displayed in Figure 4.2.

4.1.3 Defunctionalizing the continuations

Next we defunctionalize the continuations of the search functions, as described in Sec-
tion 3.2. The transformation of search_aexp together with the data types of contexts
is displayed in Figure 4.3. The continuations of the search function encode a notion of
context which is given a first-order representation by defunctionalization. The data type
of defunctionalized continuations coincide with the reduction contexts of our reduction
semantics in Figure 2.7. Furthermore, the CPS-transformed and defunctionalized search
function coincides with the decomposition function in Figure 2.9, Figure 2.10, and Fig-
ure 2.11: given a command it finds (by construction) the next redex and returns both the
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(* aexp * (aval -> cval_or_red) -> cval_or_red *)
fun search_aexp (NUM n, k)

= k (VNUM n)
| search_aexp (REF l, k)
= CREDA (PR_REF l, k)

| search_aexp (ADD (a1, a2), k)
= search_aexp (a1,

fn v1
=> search_aexp (a2,

fn v2
=> CREDA (PR_ADD (v1, v2), k)))

| search_aexp (SUB (a1, a2), k)
= search_aexp (a1,

fn v1
=> search_aexp (a2,

fn v2
=> CREDA (PR_SUB (v1, v2), k)))

| search_aexp (MUL (a1, a2), k)
= search_aexp (a1,

fn v1
=> search_aexp (a2,

fn v2
=> CREDA (PR_MUL (v1, v2), k)))

Figure 4.2: The simplified CPS-transformed search function for arithmetic expressions

redex and a representation of its reduction context.

As this prequel shows, starting from a specification of a reduction strategy given as
a total and compositional function, we can mechanically extract both the grammar of
reduction context and the decomposition function of a reduction semantics.

4.2 Refocusing:

from reduction-based to reduction-free evaluation

A reduction semantics defines one-step reduction as the composition of decomposition,
contraction and recomposition (Figure 2.12). Diagrammatically:

◦

decompose ##

one-step reduction
// ◦

◦
contract

// ◦
recompose

;;
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datatype ccont = ...
datatype bcont = ...

datatype acont
= A1 of acont * aexp
| A2 of acont * aexp
| A3 of acont * aexp
| A4 of aval * acont
| A5 of aval * acont
| A6 of aval * acont
| A7 of bcont * aexp (* from: search_bexp (LEQ (a1, a2), k) *)
| A8 of aval * bcont
| A9 of loc * ccont (* from: search_com (SET (l, a), k) *)

(* acont * aval -> cval_or_red *)
fun search_acont (A1 (k, a2), v1) = search_aexp (a2, A4 (v1, k))
| search_acont (A2 (k, a2), v1) = search_aexp (a2, A5 (v1, k))
| search_acont (A3 (k, a2), v1) = search_aexp (a2, A6 (v1, k))
| search_acont (A4 (v1, k), v2) = CREDA (PR_ADD (v1, v2), k)
| search_acont (A5 (v1, k), v2) = CREDA (PR_SUB (v1, v2), k)
| search_acont (A6 (v1, k), v2) = CREDA (PR_MUL (v1, v2), k)
| search_acont (A7 (k, a2), v1) = search_aexp (a2, A8 (v1, k))
| search_acont (A8 (v1, k), v2) = CREDB (PR_LEQ (v1, v2), k)
| search_acont (A9 (l, k), v ) = CREDC (PR_SET (l, v), k)

(* aexp * acont -> cval_or_red *)
and search_aexp (NUM n, k) = search_acont (k, VNUM n)
| search_aexp (REF l, k) = CREDA (PR_REF l, k)
| search_aexp (ADD (a1, a2), k) = search_aexp (a1, A1 (k, a2))
| search_aexp (SUB (a1, a2), k) = search_aexp (a1, A2 (k, a2))
| search_aexp (MUL (a1, a2), k) = search_aexp (a1, A3 (k, a2))

Figure 4.3: The defunctionalized and CPS-transformed search function for arithmetic ex-
pressions

Evaluation is then the iteration of one-step reduction (Figure 2.13). Diagrammatically:

// ◦

decompose ##

one-step reduction
// ◦

##

one-step reduction
// ◦

◦
contract

// ◦

;;

◦
contract

// ◦
recompose

;;

This evaluation of an expression is reduction based because it enumerates the successive
reducts in the reduction sequence, i.e., it enumerates the successive expressions in the
sequence of one-step reductions. Reduction-based evaluation is needlessly inefficient be-
cause after each contraction, the reduction context and contractum are recomposed to
construct the reduced expression, only to be subsequently decomposed in search of the
next redex. Danvy and Nielsen have shown how, under circumstances met here, the enu-
meration of intermediate expressions in the reduction sequence can be deforested away
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(* val_or_dec * store -> store *)
fun iterate (VAL VSKIP, st)

= st
| iterate (ADEC (r, E), st)
= iterate (decompose_aexp (contract_ared (r, st), E), st)

| iterate (BDEC (r, E), st)
= iterate (decompose_bexp (contract_bred r, E), st)

| iterate (CDEC (r, E), st)
= let val (c’, st’) = contract_cred (r, st)
in iterate (decompose_com (c’, E), st’)
end

(* com -> store *)
fun eval c = iterate (decompose_com (c, C0), EMPTY)

Figure 4.4: Reduction-free evaluation obtained by refocusing

by refocusing [71, 197].

// ◦

decompose ##

one-step reduction
// ◦

##

one-step reduction
// ◦

refocus
// ◦

contract
// ◦

;;

refocus
// ◦

contract
// ◦

recompose

;;

refocus
//

This deforestation is achieved by simply continuing the decomposition of the contractum in
the current context and is implemented in Figure 4.4.

4.3 Lightweight fusion:

from small-step to big-step abstract machine

We can view the reduction-free evaluation in Section 4.2 as a state-transition system in
small steps: the states are decompositions and the transitions are driven by the iterate
function (also known as a ‘driver loop’ or ‘trampoline’ [98]). However, because we are not
interested in the construction of these intermediate states when implementing evaluation,
we can instead view the state-transition system as producing a final result in one big step:
the states are functions and the transitions are function calls in tail position.

The correspondence between these two views is established by the lightweight-fusion
program transformation [155]. This program transformation fuses iterate with the de-
composition functions so that the resulting function is directly applied to the result of de-
composition. Thus iterate fused with decompose_aexp becomes eval_aexp, iterate
fused with decompose_acont becomes eval_acont, and so forth. The evaluation func-
tions for arithmetic expressions after lightweight fusion are shown in Figure 4.5 together
with the new iterate function.
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(* aexp * acont * store -> store *)
fun eval_aexp (NUM n, k, st) = eval_acont (k, VNUM n, st)
| eval_aexp (REF l, k, st) = iterate (ADEC (PR_REF l, k), st)
| eval_aexp (ADD (a1, a2), k, st) = eval_aexp (a1, A1 (k, a2), st)
| eval_aexp (SUB (a1, a2), k, st) = eval_aexp (a1, A2 (k, a2), st)
| eval_aexp (MUL (a1, a2), k, st) = eval_aexp (a1, A3 (k, a2), st)

(* acont * aval * store -> store *)
and eval_acont (A1 (k, a2), v1, st) = eval_aexp (a2, A4 (v1, k), st)
| eval_acont (A2 (k, a2), v1, st) = eval_aexp (a2, A5 (v1, k), st)
| eval_acont (A3 (k, a2), v1, st) = eval_aexp (a2, A6 (v1, k), st)
| eval_acont (A4 (v1, k), v2, st) = iterate (ADEC (PR_ADD (v1, v2), k), st)
| eval_acont (A5 (v1, k), v2, st) = iterate (ADEC (PR_SUB (v1, v2), k), st)
| eval_acont (A6 (v1, k), v2, st) = iterate (ADEC (PR_MUL (v1, v2), k), st)
| eval_acont (A7 (k, a2), v1, st) = eval_aexp (a2, A8 (v1, k), st)
| eval_acont (A8 (v1, k), v2, st) = iterate (BDEC (PR_LEQ (v1, v2), k), st)
| eval_acont (A9 (l, k), v, st) = iterate (CDEC (PR_SET (l, v), k), st)

and eval_bexp : bexp * bcont * store -> store = ...
and eval_bcont : bcont * bval * store -> store = ...
and eval_com : com * ccont * store -> store = ...
and eval_ccont : ccont * cval * store -> store = ...

(* val_or_dec * store -> store *)
and iterate (VAL VSKIP, st) = st
| iterate (ADEC (r, E), st) = eval_aexp (contract_ared (r, st), E, st)
| iterate (BDEC (r, E), st) = eval_bexp (contract_bred r, E, st)
| iterate (CDEC (r, E), st) = let val (c’, st’) = contract_cred (r, st)

in eval_com (c’, E, st’)
end

(* com -> store *)
fun eval c = eval_com (c, C0, EMPTY)

Figure 4.5: Evaluation of arithmetic expressions after lightweight-fusion

4.4 Hereditary transition compression

In the evaluation function derived by lightweight fusion in Section 4.3, many of the tran-
sitions are ‘corridor’ ones in that they yield configurations for which there is a unique
further transition. For example, in the forth case of eval_acont we know that the next
transition is the decomposition case for arithmetic expressions in iterate. Furthermore,
we know that the redex is an addition redex. Thus, we can compress these transitions:

eval_acont (A4 (v1 as VNUM n1, k), v2 as VNUM n2, st)
= iterate (ADEC (PR_ADD (v1, v2), k), st)
= eval_aexp (contract_ared (PR_ADD (v1, v2), st), k, st)
= eval_aexp (NUM (n1 + n2), k, st)
= eval_acont (k, VNUM (n1 + n2), st)

We hereditary compress all of these corridor transitions. The result is the implementation
of an abstract machine displayed in Figure 4.6. This implementation has a remaining inef-
ficiency in the last case of eval_com pertaining to WHILE. Here, it constructs a B3 context
with the partially known expressions SEQ (c, WHILE (b, c)) and SKIP. This structure
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(* aexp * acont * store -> store *)
fun eval_aexp (NUM n, k, st) = eval_acont (k, VNUM n, st)
| eval_aexp (REF l, k, st) = eval_acont (k, lookup (l, st), st)
| eval_aexp (ADD (a1, a2), k, st) = eval_aexp (a1, A1 (k, a2), st)
| eval_aexp (SUB (a1, a2), k, st) = eval_aexp (a1, A2 (k, a2), st)
| eval_aexp (MUL (a1, a2), k, st) = eval_aexp (a1, A3 (k, a2), st)

(* acont * aval * store -> store *)
and eval_acont (A1 (k, a2), v1, st) = eval_aexp (a2, A4 (v1, k), st)
| eval_acont (A2 (k, a2), v1, st) = eval_aexp (a2, A5 (v1, k), st)
| eval_acont (A3 (k, a2), v1, st) = eval_aexp (a2, A6 (v1, k), st)
| eval_acont (A4 (VNUM n1, k), VNUM n2, st) = eval_acont (k, VNUM (n1 + n2), st)
| eval_acont (A5 (VNUM n1, k), VNUM n2, st) = eval_acont (k, VNUM (n1 - n2), st)
| eval_acont (A6 (VNUM n1, k), VNUM n2, st) = eval_acont (k, VNUM (n1 * n2), st)
| eval_acont (A7 (k, a2), v1, st) = eval_aexp (a2, A8 (v1, k), st)
| eval_acont (A8 (VNUM n1, k), VNUM n2, st) = eval_bcont (k, if n1 <= n2

then VTRUE else VFALSE, st)
| eval_acont (A9 (l, k), v, st) = eval_ccont (k, VSKIP, ASSOC (l, v, st))

(* bexp * bcont * store -> store *)
and eval_bexp (TRUE, k, st) = eval_bcont (k, VTRUE, st)
| eval_bexp (FALSE, k, st) = eval_bcont (k, VFALSE, st)
| eval_bexp (LEQ (a1, a2), k, st) = eval_aexp (a1, A7 (k, a2), st)
| eval_bexp (NOT b, k, st) = eval_bexp (b, B1 k, st)
| eval_bexp (AND (b1, b2), k, st) = eval_bexp (b1, B2 (k, b2), st)

(* bcont * bval * store -> store *)
and eval_bcont (B1 k, VTRUE, st) = eval_bcont (k, VFALSE, st)
| eval_bcont (B1 k, VFALSE, st) = eval_bcont (k, VTRUE, st)
| eval_bcont (B2 (k, b2), VTRUE, st) = eval_bexp (b2, k, st)
| eval_bcont (B2 (k, b2), VFALSE, st) = eval_bcont (k, VFALSE, st)
| eval_bcont (B3 (k, c1, c2), VTRUE, st) = eval_com (c1, k, st)
| eval_bcont (B3 (k, c1, c2), VFALSE, st) = eval_com (c2, k, st)

(* com * ccont * store -> store *)
and eval_com (SKIP, k, st) = eval_ccont (k, VSKIP, st)
| eval_com (SEQ (c1, c2), k, st) = eval_com (c1, C1 (k, c2), st)
| eval_com (SET (l, a), k, st) = eval_aexp (a, A9 (l, k), st)
| eval_com (IF (b, c1, c2), k, st) = eval_bexp (b, B3 (k, c1, c2), st)
| eval_com (WHILE (b, c), k, st) = eval_bexp (b, B3 (k, SEQ (c, WHILE (b, c)), SKIP), st)

(* ccont * cval * store -> store *)
and eval_ccont (C0, VSKIP, st) = st
| eval_ccont (C1 (k, c2), VSKIP, st) = eval_com (c2, k, st)

(* com -> store *)
fun eval c = eval_com (c, C0, EMPTY)

Figure 4.6: Evaluation functions after hereditary transition compression

is no longer known in the case for B3 in eval_bcont. To avoid loosing information, we
specialize the context as B4 and add a new case in eval_bcont to continue when given
this specialized context:

eval_com (WHILE (b, c), k, st)
= eval_bexp (b, B3 (k, SEQ (c, WHILE (b, c)), SKIP), st)
= eval_bexp (b, B4 (k, b, c), st)
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eval_bcont (B4 (k, b, c), VTRUE, st)
= eval_com (SEQ (c, WHILE (b, c)), k, st)
= eval_com (c, C1 (k, WHILE (b, c)), st)

eval_bcont (B4 (k, b, c), VFALSE, st)
= eval_com (SKIP, k, st)
= eval_ccont (k, VSKIP, st)

This specialization gives rise to a similar construction of C1 with the partially known ex-
pression WHILE (b, c). We specialize this context as C2 and add a new case in eval_ccont
to continue when given this specialized context:

eval_bcont (B4 (k, b, c), VTRUE, st)
= eval_com (c, C1 (k, WHILE (b, c)), st)
= eval_com (c, C2 (k, b, c), st)

eval_ccont (C2 (k, b, c), v, st)
= eval_cexp (WHILE (b, c), k, st)
= eval_bexp (b, B4 (k, b, c), st)

This hereditary-compressed machine coincides with the abstract machine in Figure 3.3,
where truth values are represented by ML booleans, numeric values by ML integers, com-
mand values (i.e., VSKIP) are eliminated entirely, and a few names are renamed.

4.5 Summary and conclusion

Starting from a compositional search function, we have mechanically derived the imple-
mentation of a reduction semantics and an abstract machine for the same language. The
structural coincidence between the implicit context in a search function, the explicit re-
duction context in a reduction semantics, and the first-order stack in an abstract machine
play the key rôle in this connection.

We have mechanically derived the same implementation of an abstract machine in two
ways:

1. Starting with an implementation of the direct semantics for I and using the func-
tional correspondence (Chapter 3).

2. Starting with an implementation of the reduction semantics for I and using the
syntactic correspondence (Chapter 4).

This connection is no coincidence but is witness to a striking unity of computation across
big-step and small-step specifications and their implementations.

4.6 The syntactic correspondence in perspective

The development of the syntactic correspondence started with Danvy and Nielsen’s work
on refocusing a reduction semantics to obtain a reduction-free interpreter [59, 71], i.e.,
one that does not enumerate the reduction sequence during evaluation. This reduction-
free interpreter is further fused into the form of an abstract machine [67], providing a
syntactic companion to the functional correspondence. This syntactic correspondence has
been shown to be widely applicable and to provide instrumental guidelines to construct
new semantic artifacts and to establish the equivalence of existing ones [62]:
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• Danvy and Nielsen [59, 71] apply the correspondence to call-by-value and call-
by-name reduction. Starting from a call-by-value reduction semantics they derive
Felleisen and Friedman’s CK machine [87], which has no environment component.
Starting from a call-by-name reduction semantics they derive a variant of Krivine’s
machine [127, 128] using actual substitutions.

• Biernacka and Danvy [28] extend the correspondence to calculi of explicit substi-
tutions and abstract machines with environments. Starting from a call-by-value
reduction semantics with explicit substitutions they derive Felleisen and Friedman’s
CEK machine [87]. Starting from a call-by-name reduction semantics with explicit
substitutions they derive Krivine’s machine [127, 128]. In addition, they derive
Leroy’s Zinc machine [136] as an applicative-order analog of Krivine’s machine.

• Biernacka, Biernacki, and Danvy [30] extend the correspondence to account for
delimited control in the CPS hierarchy. For a given level of the CPS hierarchy, n,
they construct a reduction semantics with n+ 1 layers of evaluation contexts from
which they derive an abstract machine with n+ 1 control stacks accounting for the
family of control operators shiftn and resetn.

• Biernacka and Danvy [27] extend the correspondence to account for languages with
effects. Their work connects several semantics artifacts featuring control operators,
stack inspection, tail recursion and store-based lazy evaluation.

• Biernacka and Danvy [29] give a calculus of explicit substitutions that is inter-
derivable with Clinger’s abstract machine for Core Scheme [47].

• Munk [151] shows that the correspondence systematically accounts for Felleisen
and Hieb’s theories of control and state [85, 88].

• Danvy and Johannsen [65, 119] extend the correspondence to inter-derive a new
abstract machine with Abadi and Cardelli’s object calculus [1]. In addition they
provide a new variant of the calculus based on explicit substitutions together with
its inter-derived abstract machine.

• Sieczkowski et al. [196, 197]mechanized the refocusing transformation and proved
it correct in the Coq proof assistant.

• Anton and Thiemann [9, 10] extend the correspondence to derive a type system
and an implementation for coroutines.

• Sergey and Clarke [192–194] extend the correspondence to inter-derive type check-
ing algorithms. In particular, they connect reduction-based type checking [129]
with traditional recursive-descent type checking [166].

• Recently, Ariola et al. [17] used the correspondence to derive a sequent calculus for
classical call-by-need reduction.

In this dissertation, the techniques from the syntactic correspondence are employed in
several places:

• Chapter 5 extends the syntactic correspondence with a prequel to reduction seman-
tics, which is based on the functional correspondence. Starting from a big-step and
specification of a reduction strategy in the form of a compositional search function,
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we derive both the grammar of reduction contexts and the decomposition function
of a reduction semantics. From this derived formulation the syntactic correspon-
dence can then be applied to obtain an abstract machine.

• Chapter 6 extends the syntactic correspondence to inter-derive small-step and big-
step normalization functions for boolean-propositional formulas. The immediate
reduction semantics for conjunction normalization is not in the form required by
refocusing. We show how to disambiguate the reduction rules using delimited re-
duction contexts. Refocusing the resulting system yields an abstract machine with
delimited stacks which can be further inter-derived using the functional correspon-
dence.

• Chapter 7 extends the syntactic correspondence to connect store-less accounts of
call-by-need evaluation. We use the syntactic correspondence to inter-derive a store-
less abstract machine directly from Ariola-al call-by-need λ-calculus [15]. In partic-
ular, this work clarifies how several types of reduction contexts are used to encode
the demand-driven computation and memoization of call by need.

• Chapter 8 gives a synthetic account of call-by-need evaluation. It provides bisimu-
lations for a series reduction semantics for call-by-need evaluation spanning from
the storeless call-by-need calculus of Ariola-al et al. [15] to a state-based reduction
semantics using a store and updateable thunks. Each of these reduction semantics
is then inter-derived with their corresponding abstract machine and natural seman-
tics. Together, the bisimulations and inter-derivations give a constructive connec-
tion of Crégut’s original lazy Krivine machine [51] with Ariola et al.’s call-by-need
λ-calculus, and with Launchbury’s natural semantics for call by need. In addition,
the synthetic account systematically maps out the “spaces between” the existing
specifications.

• Chapter 9 and Chapter 10 connect the theory and practice of Combinatory graph
reduction. The theory as embodied by Barendregt et al.’s term-graph rewriting,
and the practice as embodied by Turner’s original reduction machine. Chapter 9
establishes this connection in the context of an impure implementation of graph
rewriting. Chapter 10 establishes this connection in the context of syntactic theories
for graph rewriting.
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Chapter 5

A prequel to reduction semantics

Joint work with Olivier Danvy.

Abstract

We present a methodology for deriving a reduction semantics from an equational
theory. This methodology is simple and it scales to arbitrarily complex cases. Our start-
ing point is a compositional, big-step specification of a deterministic reduction strategy.
We then mechanically derive the key components of a reduction semantics: an optimal
grammar of evaluation contexts, a proof of the unique decomposition property, and
small-step implementations of the decomposition function and of the recomposition
function. The resulting reduction semantics is “refocus-ready,” i.e., it is in a form that
makes it very simple to derive a corresponding abstract machine, which is traditionally
perceived and presented as a major endeavor. The methodology uses two off-the-shelf
program transformations: the CPS transformation and defunctionalization. We present
three applications: arithmetic expressions, the lambda-calculus with exceptions, and
JavaScript, which we extend with coroutines in passing.

5.1 Introduction

Since their inception in Felleisen’s PhD thesis [85], witness any recent proceedings of POPL
or ICFP, reduction semantics have become something of a de-facto standard for semantic
engineers to specify programming languages [89]. A reduction semantics is to a small-
step operational semantics [171] what a continuation semantics is to a (denotational or
operational) big-step semantics in direct style: in such a semantics, each term is evaluated
along with a representation of ‘the rest of the evaluation’ – i.e., its evaluation context – and
in such a small-step semantics, each term is reduced along with a representation of ‘the
rest of the reduction’ – i.e., its reduction context. Stating a reduction semantics therefore
requires one to phrase its reduction contexts and, for deterministic languages, to prove a
unique decomposition property.

There is no method to specify reduction contexts: semantic engineers are on their own
to decide whether all cases are covered and whether none of them is redundant. Ditto for
proving the unique decomposition property.
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And then there is the issue of implementing the reduction semantics as an abstract
machine and of proving the soundness of this abstract machine. Again, semantic engineers
are on their own: for example, contexts are typically represented ‘outside-in’ at first, but
then most of the time they end up being used ‘inside out’ shortly thereafter, on the intuitive
ground that “a continuation is just an inside-out evaluation context” – an intuition that
requires the semantic engineer to understand continuations. For non-trivial cases such as
stack inspection [46] and call by need [99], implementing a reduction semantics as an
abstract machine is a substantial endeavor. Refocusing [71, 197] has been proposed to
assist this effort, but not all the reduction semantics are “refocus-ready.” In any case, the
crucial issue is to write a good decomposition function, but there is no method for that.

In this article, we present a method where all of the above can be obtained mechan-
ically from the specification of a deterministic reduction strategy. The method works as
follows:

1. For a given grammar of terms and values, for a given notion of contraction, and for
a given reduction strategy, write a compositional function that searches a non-value
term for the first potential redex according to the reduction strategy.

2. CPS transform this search function and defunctionalize the continuations. The re-
sult is the grammar of the reduction contexts along with two mutually recursive
search functions acting on terms and on reduction contexts.

3. Extend this defunctionalized search function to return the first potential redex in
a given term together with the corresponding reduction context. The result is a tail-
recursive implementation of the decomposition function that is refocus-ready.

It is our experience that for its simplicity, this prequel to reduction semantics is sub-
stantially applicable. It applies not only to the λ-calculus (with actual substitutions and
with explicit substitutions, and with call by value, call by name, and call by need), to
combinatory logic, and to graph rewriting, but also to the λ-calculus with effects (be
them undelimited or delimited). For a concrete example, it applies to all of the reduction
semantics in Felleisen et al.’s textbook on semantic engineering [89].

In this article, we introduce this prequel and illustrate it with three semantics of in-
creasing complexity: arithmetic expressions, the λ-calculus with exceptions, and Guha et
al.’s semantics for JavaScript, λJS, which we extend with coroutines in passing.

Our message is that semantic notation is not random, nor is it arbitrary, and that it is
also consistent and inter-derivable. This inter-derivability means that there is no need to
learn separately about the possibility of reduction to be stuck (Plotkin) and of evaluation
to go wrong (Milner): these two concepts are consistent and inter-derivable. Likewise
for the notion of reduction strategy (normal order, applicative order, etc.) and of evalua-
tion order (call by name, call by value, etc.): each reduction strategy is mirrored into an
evaluation strategy through the inter-derivation. All in all, this inter-derivability means
that semantic engineers do not need to go out of their zone of comfort to specify, char-
acterize, or reason about programming languages. As for beginning semantic engineers,
they do not need to be put off by existing semantics, or to feel helpless at the prospect of
writing one: the specific contribution of the present methodology is a simple, practical,
and scalable method to formulate reduction semantics. And once a beginning semantic
engineer knows how to formulate a reduction semantics, (s)he is much more at ease to
understand another one, for as Richard Feynman puts it, “What I cannot create, I do not
understand.” This methodology is now in use outside the authors’ university, it has already
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served as guideline to semantic engineers for obtain reduction semantics that would be
daunting to write from scratch, and it has already been used to spot errors and fix them. In
short, it makes it possible even for a beginning semantic engineer to formulate a correct,
non-trivial, and useful reduction semantics that can then be inter-derived into an abstract
machine. The variety of (necessarily concise) examples of the present article illustrates
the general applicability of the methodology for deriving a reduction semantics from a
simple prequel.

Overview: We illustrate the prequel with Pierce’s language of conditional arithmetic ex-
pressions [166] (Section 5.2). We then turn to the call-by-value λ-calculus (Section 5.3).
We extend the treatment of call-by-value to account for exceptions with context sensitive
contraction rules (Section 5.4), and context insensitive contraction rules (Section 5.5).
From the treatment of context insensitive contraction rules, we apply the method to Guha
et al.’s semantics for JavaScript (Section 5.6).

Prerequisites: We assume the reader to be mildly familiar with the notion of reduction
semantics [85, 89], the continuation-passing style transformation [94, 200] and to know
that a function is defunctionalized into a data type and an apply function dispatching over
this data type [70, 176].

Notations: We use n ∈ Int to denote integers, b ∈ Bool to denote the truth values true
and false, and x ∈ Ide to denote identifiers. We use C to denote an abstract one-hole
context which is concretely represented as elements in the function space Term→ Term
for some definition of Term. The term obtained by plugging the term t into the hole of the
context C is written as C[t]; concretely, this plugging is achieved by applying C to t. The
empty context is written as []; concretely, it is represented as the identity function. When
specifying the contraction rules for a reduction semantics, we distinguish between two
types of rules: those that depend upon the context surrounding a redex – the context-
sensitive rules; and those that only depend on the redex itself – the context-insensitive
rules. Finally, to avoid confusion with syntactic abstraction and application, we use λ to
indicate meta-level abstraction and @ as the infix meta-level application.

5.2 Arithmetic expressions

The goal of this section is to present our prequel to reduction semantics. To this end, we
consider a simple subset of Pierce’s language of conditional arithmetic expressions [166].
This section serves as a point of reference for all of the later developments, so we detail
it.

5.2.1 Syntax and contraction

The formulation of conditional arithmetic expressions reads as follows:

Definition 9 (conditional arithmetic expressions).
Syntax:

Term 3 t ::= n | b | t + t | t ⇒ t; t
Val 3 v ::= n | b

PotRed 3 r ::= v + v | v⇒ t; t
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Contraction rules:

(plus) n0 + n1 → n where n= n0 + n1
(true) true⇒ t1; t2 → t1
(false) false⇒ t1; t2 → t2

A = (plus) ∪ (true) ∪ (false)

In words: Terms are literals, additions of two terms, and conditional expressions. We
have two disjoint restrictions on terms: values which are the normal forms; and potential
redexes which are the terms subject to reduction. Values are literals. There are two forms
of potential redexes: the addition of two values or a conditional expression testing a value.
To be an actual redex, the two values in an addition have to be integer literals, and the
value being tested in a conditional expression has to be a Boolean literal. Otherwise, none
of the contraction rules apply and the redex and the corresponding program are said to
be stuck. We letA be the notion of reduction on conditional arithmetic expressions.

5.2.2 Reduction strategy

We consider the left-most outer-most reduction strategy where the branches of conditional
expressions are reduced lazily. The following reduction sequence illustrates it:

(1000+ 100) + (10+ 1)→
1100+ (10+ 1)→
1100+ 11→
1111

This reduction strategy is obtained with a depth-first left-to-right search through the syn-
tax tree of the term under reduction. Let us spell out this search as a function that maps
a value term to itself and a non-value term to the first potential redex in the reduction
sequence. The search is carried out with a straight recursive descent on terms, following
the reduction strategy. Literals are mapped to values; the left sub-term of an addition is
first traversed, and if it turns out to be a value, the right sub-term is then traversed; and
the test sub-term of a conditional expression is traversed. To avoid notational cluttering,
we leave injection tags implicit:

Term→ Val+ PotRed
term(n) = n
term(b) = b

term(t0 + t1) = case term(t0) of
| v0 → case term(t1) of

| v1 → v0 + v1
| r → r

| r → r
term(t0⇒ t1; t2) = case term(t0) of

| v0 → v0⇒ t1; t2
| r → r

In general, search is a compositional and total function mapping a term to a value, po-
tential redex, or an error. Errors are observable objects and thus distinguishable from
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non-termination. Depending on the well-formedness criteria for terms, errors might be
avoided as is the case for this account of arithmetic expressions.

Term→ Val+ PotRed
search(t) = case term(t) of

| v → v
| r → r

While straightforward to write, this search function forces one to express the essence of the
reduction paraphernalia. Indeed, from this search function alone, we can mechanically
extract both the grammar of reduction contexts and the decompose function, as illustrated
in the next sections.

NB. This search function reflects the usual congruence rules and propagation of values
as specified in a structural operational semantics [171].

5.2.3 CPS transforming the search function

Let us start by CPS transforming the search function of Section 5.2.2:

Term× (Val+ PotRed→ α)→ α
term(n, k) = k @ n
term(b, k) = k @ b

term(t0 + t1, k) = term(t0, λx .case x of
| v0 → term(t1, λx .case x of

| v1 → k @ (v0 + v1)
| r → k @ r)

| r → k @ r)
term(t0⇒ t1; t2, k) = term(t0, λx .case x of

| v0 → k @ (v0⇒ t1; t2)
| r → k @ r)

Term→ Val+ PotRed

search(t) = term(t, λx .case x of
| r → r
| v → v)

The result is a tail-recursive search function with a functional representation of “the rest of
the search.” This representation encodes a notion of context, as developed in the following
section.

5.2.4 Defunctionalizing the continuations

In Section 5.2.3, the search function constructs continuations at three distinct sites, given
an initial continuation. We therefore partition the function space into four summands:

1. The initial continuation, the identity function, which has no free variables.

2. The first continuation when searching in an addition, which has two free variables:
the continuation k, and the term t1.
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3. The second continuation when searching in an addition, which has two free vari-
ables: the value v0, and the continuation k.

4. The continuation when searching in a conditional expression, which has three free
variables: the continuation k, and the terms t1 and t2.

Defunctionalizing the continuation of the search function therefore gives rise to (1) the
following data type of reduction contexts, expressed as a grammar:

Ctx 3 C ::= [ ] | C + t | v + C | C ⇒ t; t

and (2) an apply function dispatching over the data type of contexts:

Ctx× (Val+ PotRed)→ Val+ PotRed
context([ ], v) = v
context([ ], r) = r

context(C + t1, v0) = term(t1, v0 + C)
context(C + t1, r) = context(C , r)

context(v0 + C , v1) = context(C , v0 + v1)
context(v0 + C , r) = context(C , r)

context(C ⇒ t1; t2, v0) = context(C , v0⇒ t1; t2)
context(C ⇒ t1; t2, r) = context(C , r)

After defunctionalization, the search function reads as follows:

Term× Ctx→ Val+ PotRed
term(n, C) = context(C , n)
term(b, C) = context(C , b)

term(t0 + t1, C) = term(t0, C + t1)
term(t0⇒ t1; t2, C) = term(t0, C ⇒ t1; t2)

Term→ Val+ PotRed
search(t) = term(t, [ ])

Simplifying the apply function: In the starting definition of the search function (Sec-
tion 5.2.2), a redex bubbles up through the chain of returns, reflecting the depth of the
recursive descent. After CPS transformation (Section 5.2.3), the definition of the search
function is tail-recursive, and so is its defunctionalized counterpart. However, in a tail-
recursive definition, the chain of returns has length 1, and there is thus no need to bubble
up redexes when they are found. Let us optimize the definition of the search function by
short-cutting the propagation of potential redexes:

Proposition 10 (potential redexes in context). context(C , r) = r

Proof. Induction on C .

As a consequence, all dispatching on potential redexes can be avoided in the definition of
context:

Ctx× Val→ Val+ PotRed
context([ ], v) = v

context(C + t1, v0) = term(t1, v0 + C)
context(v0 + C , v1) = v0 + v1

context(C ⇒ t1; t2, v0) = v0⇒ t1; t2
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5.2.5 Searching for the first potential redex and its reduction
context

Let us make the search function return not just the first potential redex in a given non-
value term but also the associated reduction context. Together, the potential redex and
the reduction context form a decomposition 〈r, C〉 ∈ PotRed× Ctx. We therefore rename
search to decompose:

Term× Ctx→ Val+ PotRed× Ctx
term(n, C) = context(C , n)
term(b, C) = context(C , b)

term(t0 + t1, C) = term(t0, C + t1)
term(t0⇒ t1; t2, C) = term(t0, C ⇒ t1; t2)

Ctx× Val→ Val+ PotRed× Ctx
context([ ], v) = v

context(C + t1, v0) = term(t1, v0 + C)
context(v0 + C , v1) = 〈v0 + v1, C〉

context(C ⇒ t1; t2, v0) = 〈v0⇒ t1; t2, C〉

Term→ Val+ PotRed× Ctx
decompose(t) = term(t, [ ])

This definition is that of the traditional decomposition function of a non-value term into
a potential redex and its context, represented as a big-step abstract machine [67]. (Value
terms are fixed points.) Furthermore, the machine consists of two mutually recursive
functions that respectively dispatch on terms and on reduction contexts. From such a
decompose function, as illustrated elsewhere [9, 27, 28, 73, 76, 77, 194, 211, 222], a
wide range of other semantic formulations can be derived.

5.2.6 Recomposing a term and a reduction context

The recomposition function is the left fold over reduction contexts. It zips each context
constructor to its corresponding term constructor:

Ctx× Term→ Term
recompose([ ], t) = t

recompose(C + t1, t0) = recompose(C , t0 + t1)
recompose(v0 + C , t1) = recompose(C , v0 + t1)

recompose(C ⇒ t1; t2, t0) = recompose(C , t0⇒ t1; t2)

We can state the following correctness criteria for the relation between decomposition and
recomposition:

Property 11 (recomposition is a left inverse of decomposition). For all non-value terms
t, decompose(t) = 〈r, C〉 ⇒ recompose(C , r) = t.

Proof. By mutual induction on the derivations of term and context.
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Syntax:
Term 3 t ::= n | b | t + t | t ⇒ t; t

Val 3 v ::= n | b
PotRed 3 r ::= v + v | v⇒ t; t

Ctx 3 C ::= [ ] | C + t | v + C | C ⇒ t; t

Contraction rules:

(plus) n0 + n1 → n where n= n0 + n1
(true) true⇒ t1; t2 → t1
(false) false⇒ t1; t2 → t2

A = (plus) ∪ (true) ∪ (false)

Decomposition:
Term× Ctx→ Val+ PotRed× Ctx
term(n, C) = context(C , n)
term(b, C) = context(C , b)

term(t0 + t1, C) = term(t0, C + t1)
term(t0⇒ t1; t2, C) = term(t0, C ⇒ t1; t2)

Ctx× Val→ Val+ PotRed× Ctx
context([ ], v) = v

context(C + t1, v0) = term(t1, v0 + C)
context(v0 + C , v1) = 〈v0 + v1, C〉

context(C ⇒ t1; t2, v0) = 〈v0⇒ t1; t2, C〉

Term→ Val+ PotRed× Ctx
decompose(t) = term(t, [ ])

Recomposition:

Ctx× Term→ Term
recompose([ ], t) = t

recompose(C + t1, t0) = recompose(C , t0 + t1)
recompose(v0 + C , t1) = recompose(C , v0 + t1)

recompose(C ⇒ t1; t2, t0) = recompose(C , t0⇒ t1; t2)

One-step reduction:

t 7→A t ′ if







decompose(t) = 〈r, C〉
(r, t ′′) ∈A

recompose(C , t ′′) = t ′

One-step reduction is a partial function since a term may already be a value or the potential
redex may not be an actual one.

Figure 5.1: A reduction semantics for arithmetic expressions
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5.2.7 A reduction semantics

We are now in position to completely state a reduction semantics for the language of
arithmetic expressions and conditionals, as displayed in Figure 5.1. The syntax is that
of Section 5.2.1 along with the grammar of reduction contexts derived in Section 5.2.4.
The contraction rules are unchanged from Section 5.2.1. Decomposition is a tail-recursive
function that, given a non-value term, yields the next potential redex and its reduction
context. Its definition is that of Section 5.2.5 and was obtained by mechanically trans-
forming the search function implementing the reduction strategy. Recomposition is a
tail-recursive function that, given a reduction context and a term, plugs this term into
the hole of this reduction context. The definition is that of Section 5.2.6. A single step in
the reduction sequence is performed by decomposition, contraction, and recomposition.
Diagrammatically:

◦

decompose ##

one-step reduction
// ◦

◦
contract

// ◦
recompose

;;

For example, to come back to the reduction sequence of Section 5.2.2, here is its first step:

(1000+ 100)
+

(10+ 1)

decompose
%%

one-step reduction
//

1100
+

(10+ 1)

[1000+ 100]
+

(10+ 1) contract
//
[1100]
+

(10+ 1)

recompose

;;

5.2.8 An abstract machine

The reduction semantics of Section 5.2.7 provides a complete specification of evaluation
and can be directly implemented as an evaluator that iterates one-step reduction:

// ◦

decompose ##

one-step reduction
// ◦

##

one-step reduction
// ◦

◦
contract

// ◦

;;

◦
contract

// ◦
recompose

;;

However, such a reduction-based evaluator is needlessly inefficient because it enumerates
the standard reduction sequence: for each contraction, the reduction context and con-
tractum are recomposed to create the next reduct, which is subsequently decomposed in

75



5. A prequel to reduction semantics

Term× Ctx* Val
term(n, C) = context(C , n)
term(b, C) = context(C , b)

term(t0 + t1, C) = term(t0, C + t1)
term(t0⇒ t1; t2, C) = term(t0, C ⇒ t1; t2)

Ctx× Val* Val
context([ ], v) = v

context(C + t1, v0) = term(t1, v0 + C)
context(n0 + C , n1) = term(n, C) where n= n0 + n1

context(C ⇒ t1; t2, true) = term(t1, C)
context(C ⇒ t1; t2, false) = term(t2, C)

Term* Val
eval(t) = term(t, [ ])

Figure 5.2: An abstract machine for arithmetic expressions

search of the next redex. Danvy and Nielsen have shown how, under circumstances met
here, the enumeration of intermediate terms in the reduction sequence can be deforested
away by refocusing [71, 197]:

// ◦

decompose ##

one-step reduction
// ◦

##

one-step reduction
// ◦

refocus
// ◦

contract
// ◦

;;

refocus
// ◦

contract
// ◦

recompose

;;

refocus
//

This deforestation is achieved by simply continuing the decomposition of the contractum in
the current context. The result is the tail-recursive evaluator of Figure 5.2, which takes the
form of an abstract machine. We can optimize this machine by hereditarily compressing
its “corridor” transitions. For example, the third rule of context has a known target and
can be compressed to:

context(n0 + C , n1) = context(C , n) where n= n0 + n1

5.2.9 Summary and conclusion

We have constructed a refocus-ready reduction semantics out of a total search function
implementing the reduction strategy for arithmetic expressions. We have then derived the
corresponding abstract machine. The following sections instantiate this construction for
a variety of notions of computation.

Terminology: In the rest of these notes, we refer to the construction of a refocus-ready
reduction semantics as “the prequel.” Following Biernacka and Danvy [28], we refer to
the subsequent derivation of an abstract machine as “the syntactic correspondence.”
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5.3 The call-by-value λ-calculus

In this section, we develop a call-by-value reduction semantics for the λ-calculus with
integers. This semantics will serve as a starting point for the extensions treated in later
sections.

5.3.1 Syntax and contraction

The call-by-value formulation reads as follows:

Definition 12 (λ-calculus for call-by-value reduction).
Syntax:

Term 3 t ::= x | λx .t | t t | n | succ t
Val 3 v ::= λx .t | n

PotRed 3 r ::= v v | succ v

Contraction rules:

(βv) (λx .t) v → t[v/x]
(succ) succ n→ n′ where n′ = n+ 1

V = (βv) ∪ (succ)

In words: Terms are λ-terms with integers, and the successor function. There are two
disjoint restrictions on terms: values and potential redexes. Values are λ-abstractions and
integers. There are two forms of potential redexes: the application of two values or the
application of the successor function to a value. To be an actual redex, the first value of
an application must be a λ-abstraction, and the argument of the successor function must
be an integer value; otherwise the corresponding term is stuck. We let V be the notion of
call-by-value reduction on λ-terms.

5.3.2 Reduction strategy

For call by value, we consider the left-most inner-most reduction strategy without reducing
under λ-abstractions. Let us spell out the search on terms as a function that maps a value
term to itself and a non-value term to a potential redex or to an identifier that occurs
free in the term. The search is carried out with a straight recursive descent on terms
following the reduction strategy. Integers are mapped to integers; identifiers to identifiers;
λ-abstractions to λ-abstractions; the left sub-term of an application is first traversed, and if
it turns out to be a value, the right sub-term is then traversed; and the argument sub-term
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of the successor function is traversed:

Term→ Val+ PotRed+ Ide
term(n) = n
term(x) = x

term(λx .t) = λx .t
term(t0 t1) = case term(t0) of

| v0 → case term(t1) of
| v1 → v0 v1
| r → r
| x → x

| r → r
| x → x

term(succ t1) = case term(t1) of
| v1 → succ v1
| r → r
| x → x

Term→ Val+ PotRed+ Err
search(t) = case term(t) of

| v → v
| r → r
| x → error “free identifier x”

Here the search function can map to a value, a potential redex, or an explicit error. If the
result is an error or the potential redex is not an actual redex, the term is stuck.

5.3.3 A reduction semantics

Applying the prequel to the search function of Section 5.3.2 yields a grammar of reduc-
tion contexts and a decomposition function. We are then in position to state a reduction
semantics for the language in complete detail, as displayed in Figure 5.3.

5.3.4 An abstract machine

Applying the syntactic correspondence (i.e., refocusing and transition compression) to the
reduction semantics of Figure 5.3 yields the abstract machine displayed in Figure 5.4. The
cognoscenti will recognize the classical CK machine [89]. (Had our initial calculus used
explicit substitutions, the result would be an environment machine: the CEK machine [28,
87, 176].)

5.3.5 Summary and conclusion

We have constructed a refocus-ready reduction semantics out of a total search function
implementing a call-by-value reduction strategy for the λ-calculus. We have then derived
the corresponding abstract machine.
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Syntax:
Term 3 t ::= x | λx .t | t t | n | succ t

Val 3 v ::= λx .t | n
PotRed 3 r ::= v v | succ v

Ctx 3 C ::= [ ] | C t | v C | succ C

Contraction rules:

(βv) (λx .t) v → t[v/x]
(succ) succ n→ n′ where n′ = n+ 1

V = (βv) ∪ (succ)

Decomposition:
Term× Ctx→ Val+ PotRed× Ctx+ Err
term(n, C) = context(C , n)
term(x , C) = error “free identifier x”

term(λx .t, C) = context(C , λx .t)
term(t0 t1, C) = term(t0, C t1)

term(succ t1, C) = term(t1, succ C)

Ctx× Val→ Val+ PotRed× Ctx+ Err
context([ ], v) = v

context(C t1, v0) = term(t1, v0 C)
context(v0 C , v1) = 〈v0 v1, C〉

context(succ C , v1) = 〈succ v1, C〉

Term→ Val+ PotRed× Ctx+ Err
decompose(t) = term(t, [ ])

Recomposition:

Ctx× Term→ Term
recompose([ ], t) = t

recompose(C t1, t0) = recompose(C , t0 t1)
recompose(v0 C , t1) = recompose(C , v0 t1)

recompose(succ C , t1) = recompose(C , succ t1)

One-step reduction:

t 7→V t ′ if







decompose(t) = 〈r, C〉
(r, t ′′) ∈ V

recompose(C , t ′′) = t ′

One-step reduction is a partial function since a term may already be a value, decomposi-
tion may yield an error, or the potential redex may not be an actual one.

Figure 5.3: A call-by-value reduction semantics for the λ-calculus with integers
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Term× Ctx* Val
term(n, C) = context(C , n)
term(x , C) = error “free identifier x”

term(λx .t, C) = context(C , λx .t)
term(t0 t1, C) = term(t0, C t1)

term(succ t1, C) = term(t1, succ C)

Ctx× Val* Val
context([ ], v) = v

context(C t1, v0) = term(t1, v0 C)
context((λx .t) C , v1) = term(t[v1/x], C)

context(succ C , n1) = context(C , n′1)
where n′1 = n1 + 1

Term* Val
eval(t) = term(t, [ ])

Figure 5.4: A call-by-value abstract machine for the λ-calculus

5.4 The call-by-value λ-calculus

with exceptions

and context-sensitive contraction rules

In this section, we extend the λ-calculus of Section 5.3 with exceptions using context-
sensitive contraction rules. When specifying these rules, we leave the definition of con-
texts abstract: as in Sections 5.2 and 5.3, their concrete definition will arise as the data
type of the defunctionalized continuation of the function searching for a redex according
to the reduction strategy.

5.4.1 Syntax and contraction

The context-sensitive extension reads as follows:

Definition 13 (context-sensitive λ-calculus with exceptions).
Syntax (extending the syntax of Definition 12):

Exc 3 e
Term 3 t ::= . . . | handle (t, e, t) | raise e t

PotRed 3 r ::= . . . | handle (v, e, t) | raise e v

Contraction rules (extending the rules of Definition 12):

(handle) C[handle (v, e, t)]→ C[v]
(raise) C[raise e v]→ C ′[t v]

where C = C ′[handle (C ′′, e, t)]
and e is not declared in C ′′

Es = V ∪ (handle) ∪ (raise)
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In words: The definition of terms is extended with two forms: a handle expression and a
raise exception.

• A handle expression handle (t, e, t ′) has three sub-forms: a body t, an exception
e, and a continuation t ′. When a handle expression is evaluated, its body t is first
evaluated. If no exception is raised in the course of evaluating t, the resulting value,
v, is also the result of evaluating the handle expression. If an exception e is raised
with a value v in the course of evaluating t, the continuation t ′ is applied to v in
the context of the handle expression.

• A raise expression raise e t has two sub-forms: an exception e and an argument t.
When a raise expression is evaluated, its argument t is first evaluated. If this eval-
uation yields a value v and the context of the raise expression contains a matching
handler, then the exception e is said to be raised with the value v and it is handled
by the nearest matching handler as described just above. If there is no matching
handler in the context, the term is stuck.

Values remain the same. For each new form, there is a new potential redex and a new
context-sensitive contraction rule: a handle expression with a value (i.e., where no ex-
ception was raised in the course of the reduction of its body) contracts to this value in the
same context; and a raise expression with a value locates the nearest matching handler
in the current context and contracts to the application of the handler’s continuation to
the raised value in the context of the corresponding handle expression. In so doing, the
delimited context up to the point of the handler expression, i.e., C ′′, is elided. We let Es
be the notion of context-sensitive reduction on λ-terms with exceptions.

5.4.2 Reduction strategy

For this extension of call by value with exceptions, we consider the left-most inner-most
reduction strategy where handler continuations are treated lazily, the way consequents
and alternatives were treated in conditional expressions, in Section 5.2. Let us spell out
the search on terms as a function that maps a value term to itself and a non-value term to
a potential redex or to an identifier that occurs free in the term. The search is carried out
with a straight recursive descent on terms following the reduction strategy. For brevity,
instead of specifying the search function in full, we present it as an extension of the search
function from Section 5.3.2. Both the body of a handle expression and the argument of a
raise expression are traversed:

Term → Val+ PotRed+ Ide
· · ·

term(handle (t, e, t ′)) = case term(t) of
| v → handle (v, e, t ′)
| r → r
| x → x

term(raise e t) = case term(t) of
| v → raise e v
| r → r
| x → x
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Term→ Val+ PotRed+ Err
search(t) = case term(t) of

| v → v
| r → r
| x → error “free identifier x”

5.4.3 A reduction semantics

Applying the prequel to the call-by-value search function of Section 5.4.2 yields a grammar
of reduction contexts and a decomposition function. We are then in position to state a
reduction semantics for the language in complete detail, as displayed in Figure 5.5.

5.4.4 An abstract machine

Applying the syntactic correspondence (i.e., refocusing and transition compression) to the
reduction semantics of Figure 5.5 yields an abstract machine. This machine is the classical
CK machine extended with exceptions.

5.4.5 Summary and conclusion

We have constructed a refocus-ready reduction semantics out of a total search function
implementing the call-by-value reduction strategy for the λ-calculus with exceptions. We
have then derived the corresponding abstract machine.

This section illustrated how to apply the prequel in the presence of a control operator
specified with context-sensitive contraction rules.

5.5 The call-by-value λ-calculus

with exceptions

and context-insensitive contraction rules

In this section, we incrementally extend the call-by-value λ-calculus of Section 5.3 with
exceptions using context-insensitive contraction rules instead of context-sensitive rules, as
in Section 5.4. Again, in Section 5.5.1, as in Section 5.4.1, we leave the definition of con-
texts abstract: their concrete definition will arise as the data type of the defunctionalized
continuation of the function searching for a redex according to the reduction strategy.

5.5.1 Syntax and contraction

The context-insensitive extension reads as follows:

Definition 14 (context-insensitive λ-calculus with exceptions).
Syntax (extending the syntax of Definition 12):

Exc 3 e
Term 3 t ::= . . . | handle (t, e, t) | raise e t

PotRed 3 r ::= . . . | handle (v, e, t) | handle (C[raise e v], e, t)
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Syntax:

Exc 3 e
Term 3 t ::= x | λx .t | t t | n | succ t | handle (t, e, t) | raise e t

Val 3 v ::= λx .t | n
PotRed 3 r ::= v v | succ v | handle (v, e, t) | raise e v

Ctx 3 C ::= [ ] | C t | v C | succ C | handle (C , e, t) | raise e C

Contraction rules:

(βv) C[(λx .t) v]→ C[t[x/v]]
(succ) C[succ n]→ C[n′] where n′ = n+ 1
(handle) C[handle (v, e, t)]→ C[v]
(raise) C[raise e v]→ C ′[t v] where C = C ′[handle (C ′′, e, t)]

and e is not declared in C ′′

Es = (βv) ∪ (succ) ∪ (handle) ∪ (raise)

Decomposition:
Term× Ctx→ Val+ PotRed× Ctx+ Err
term(n, C) = context(C , n)
term(x , C) = error “free identifier x”

term(λx .t, C) = context(C , λx .t)
term(t0 t1, C) = term(t0, C t1)

term(succ t1, C) = term(t1, succ C)
term(handle (t, e, t ′), C) = term(t, handle (C , e, t ′))

term(raise e t, C) = term(t, raise e C)

Ctx× Val→ Val+ PotRed× Ctx+ Err
context([ ], v) = v

context(C t1, v0) = term(t1, v0 C)
context(v0 C , v1) = 〈v0 v1, C〉

context(succ C , v1) = 〈succ v1, C〉
context(handle (C , e, t ′), v) = 〈handle (v, e, t ′), C〉

context(raise e C , v) = 〈raise e v, C〉
Term→ Val+ PotRed× Ctx+ Err

decompose(t) = term(t, [ ])

Recomposition:
Ctx× Term→ Term

recompose([ ], t) = t
recompose(C t1, t0) = recompose(C , t0 t1)
recompose(v0 C , t1) = recompose(C , v0 t1)

recompose(succ C , t1) = recompose(C , succ t1)
recompose(handle (C , e, t ′), t) = recompose(C , handle (t, e, t ′))

recompose(raise e C , t) = recompose(C , raise e t)

One-step reduction:

t 7→Es
t ′ if decompose(t) = 〈r, C〉 ∧ (C[r], C ′[t ′′]) ∈ Es ∧ recompose(C ′, t ′′) = t ′

Figure 5.5: A call-by-value reduction semantics for the λ-calculus
with exceptions and context-sensitive contraction rules
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Contraction rules (extending the rules of Definition 12):

(handle) handle (v, e, t)→ v
(raise) handle (C[raise e v], e, t)→ t v where e is not declared in C

Ei = V ∪ (handle) ∪ (raise)

In words: The syntax is extended as in Section 5.4, i.e., with a handle expression, handle (t, e, t ′),
and a raise expression, raise e t. Values remain the same. For each new form, there is a
new potential redex and a new context-insensitive contraction rule: a handle expression
with a value (i.e., where no exception was raised in the course of the reduction of its body)
contracts to this value; and a raise expression with a value occurring in the nearest body
of a matching handle expression contracts to the application of the handler’s continuation
to the raised value. In so doing, the delimited context up to the point of the handler ex-
pression is elided. Here the abstract delimited context surrounding the raise expression
should satisfy some conditions: the raise expression should be uniquely determined and
the context should not contain any handle expressions for the same exception. Both of
these properties will follow from the specification of the search function. We let Ei be the
notion of context-insensitive reduction on λ-terms with exceptions.

5.5.2 Reduction strategy

For this extension of call by value with exceptions, we consider the left-most inner-most
reduction strategy where handler continuations are treated lazily. Let us spell out the
search on terms as a function that maps a value term to itself and a non-value term to
a potential redex, an identifier that occurs free in the term, or a raise expression and its
(abstract) context. We denote a raise expression and its context as:

Raise= (Term→ Term)× Exc× Val 3 C[raise e v]

The search is carried out with a straight recursive descent on terms following the same
reduction strategy as the call-by-value search of Section 5.3.2:

Term→ Val+ PotRed+ Ide+ Raise
term(x) = x
term(v) = v

term(t0 t1) = case term(t0) of
| v0 → case term(t1) of

| v1 → v0 v1
| r → r
| x → x
| C[raise e v]→ (v0 C)[raise e v]

| r → r
| x → x
| C[raise e v]→ (C t1)[raise e v]

term(succ t1) = case term(t1) of
| v1 → succ v1
| r → r
| x → x
| C[raise e v]→ (succ C)[raise e v]
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Both the body of a handle expression and the argument of a raise expression are traversed:

term(handle (t, e, t ′)) = case term(t) of
| v → handle (v, e, t ′)
| r → r
| x → x
| C[raise e v] → handle (C[raise e v], e, t ′)
| C[raise e′ v]→ (handle (C , e, t ′))[raise e′ v]

where e 6= e′

term(raise e t) = case term(t) of
| v → [ ][raise e v]
| r → r
| x → x
| C[raise e′ v]→ (raise e C)[raise e′ v]

Term→ Val+ PotRed+ Err
search(t) = case term(t) of

| v → v
| r → r
| x → error “free identifier x”
| C[raise e v]→ error “unhandled exception e”

Delimited contexts The search function for the context-insensitive formulation is more
complex than for the context-sensitive formulation. This is because the side condition that
was formerly about the context surrounding a redex (the (raise) rule in Definition 13) is
now stated on the delimited context that is part of the redex. Thus, the search function
must satisfy this condition as opposed to the contraction function. Just as for the grammar
of evaluation contexts, this abstract delimited context is made concrete by the search func-
tion. We defunctionalize the function-space component of Raise to obtain the grammar
of “raise” contexts:

RaiseCtx 3 R ::= [ ] | R t | v R | succ R | handle (R, e, t) | raise e R

and an application function that consumes each production in the grammar:

RaiseCtx× Term→ Term
apply([ ], t) = t

apply(R t1, t0) = apply(R, t0) t1
apply(v0 R, t1) = v0 apply(R, t1)

apply(succ R, t1) = succ apply(R, t1)
apply(handle (R, e, t ′), t) = handle (apply(R, t), e, t ′)

apply(raise e R, t) = raise e apply(R, t)

Because a raise context is constructed at return time, i.e., from the inside out, the result-
ing raise context is outside in. Therefore, the apply function is the right-fold over raise
contexts. It maps each raise context to its corresponding term constructor. Finally, it fol-
lows from the definition of search that the raise context is uniquely determined and that
no handle context is created that binds a raised exception.
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Syntax:

Exc 3 e
Term 3 t ::= x | λx .t | t t | n | succ t | handle (t, e, t) | raise e t

Val 3 v ::= λx .t | n
PotRed 3 r ::= v v | succ v | handle (v, e, t) | handle (C[raise e v], e, t)

Ctx 3 C ::= [ ] | C t | v C | succ C | handle (C , e, t) | raise e C
Raise = (Term→ Term)× Exc× Val 3 C[raise e v]

Contraction rules:

(βv) (λx .t) v → t[x/v]
(succ) succ n→ n′ where n′ = n+ 1
(handle) handle (v, e, t)→ v
(raise) handle (C[raise e v], e, t)→ t v

Ei = (βv) ∪ (succ) ∪ (handle) ∪ (raise)

Figure 5.6: A call-by-value reduction semantics for the λ-calculus
with exceptions and context-insensitive contraction rules:
syntax and contraction rules

5.5.3 A reduction semantics

Applying the prequel to the call-by-value search function of Section 5.5.2 yields a grammar
of reduction contexts and a decomposition function. We are then in position to state a
reduction semantics for the language in complete detail, as displayed in Figure 5.6 and
Figure 5.7.

NB. Note how the context rules for the raise summand implement the search for a
matching exception handler, much as we expect done to implement the side condition of
contraction in the context-sensitive specification.

5.5.4 An abstract machine

Applying the syntactic correspondence (i.e., refocusing and transition compression) to
the reduction semantics of Figure 5.6 and 5.7 yields an abstract machine. This abstract
machine result is the same one as the one obtained in Section 5.4.4. In other words, the
context-sensitive specification and the context-insensitive specification truly specify the
same operational behavior.

5.5.5 Summary and conclusion

We have constructed a refocus-ready reduction semantics out of a total search function
implementing the call-by-value reduction strategy for the λ-calculus with exceptions. We
have then derived the corresponding abstract machine.

This section illustrated how to apply the prequel in the presence of a control operator
using context-insensitive contraction rules.
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Decomposition:

Term× Ctx→ Val+ PotRed× Ctx+ Err
term(n, C) = context(C , n)
term(x , C) = error “free identifier x”

term(λx .t, C) = context(C , λx .t)
term(t0 t1, C) = term(t0, C t1)

term(succ t1, C) = term(t1, succ C)
term(handle (t, e, t ′), C) = term(t, handle (C , e, t ′))

term(raise e t, C) = term(t, raise e C)

Ctx× (Val+ Raise)→ Val+ PotRed× Ctx+ Err
context([ ], v) = v

context([ ], C[raise e v]) = error “unhandled exception e”
context(C t1, v0) = term(t1, v0 C)

context(C t1, C[raise e v]) = context(C , (C t1)[raise e v])
context(v0 C , v1) = 〈v0 v1, C〉

context(v0 C , C[raise e v]) = context(C , (v0 C)[raise e v])
context(succ C , v1) = 〈succ v1, C〉

context(succ C , C[raise e v]) = context(C , (succ C)[raise e v])
context(handle (C , e, t ′), v) = 〈handle (v, e, t ′), C〉

context(handle (C , e, t ′), C[raise e v]) = 〈handle (C[raise e v], e, t ′), C〉
context(handle (C , e, t ′), C[raise e′ v]) = context(C , (handle (C , e, t ′))[raise e′ v])

where e 6= e′

context(raise e C , v) = context(C , [ ][raise e v])
context(raise e C , C[raise e′ v]) = context(C , (raise e C)[raise e′ v])

Term→ Val+ PotRed× Ctx+ Err
decompose(t) = term(t, [ ])

Recomposition: As defined in Figure 5.5.

One-step reduction:

t 7→Es
t ′ if decompose(t) = 〈r, C〉 ∧ (r, t ′′) ∈ Es ∧ recompose(C , t ′′) = t ′

Figure 5.7: A call-by-value reduction semantics for the λ-calculus
with exceptions and context-insensitive contraction rules:
decomposition and recomposition

5.6 Case study: JavaScript

In this section, we develop a reduction semantics for a full programming language, namely
JavaScript. We start by applying the method to derive a complete specification of Guha et
al.’s reduction semantics for λJS [104]. We then look at extending the language with new
control operators in the form of coroutines based on the asynchronous coroutines found in
the Lua programming language [79]. For space reasons, we display only the parts of λJS
concerning exceptions, breaks and state, which we find of most interest to the derivation.
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5.6.1 Syntax and contraction

The semantics of λJS makes use of both context-sensitive rules and context-insensitive
rules which contain delimited contexts. The former arise from the global store while the
later are used in the specification of control operators. Our partial formulation of λJS,
renaming non-terminals for notational uniformity, reads as follows:

Definition 15 (λJS (full specification in [104])).
Syntax (exceptions, breaks and state):

Label 3 p
Location 3 `

Store 3 σ ::= ε | σ[` 7→ v]
Val 3 v ::= ` | · · ·

Term 3 t ::= v | · · · |
try { t } catch(x) { t } | throw t | err v |
p : t | break p t |
ref t | deref t | t = t

PotRed 3 r ::= throw v |
try { v } catch(x) { t } |
try { C[err v] } catch(v) { t } |
p : v | p : C[break p v] |
ref v | deref v | v = v

Contraction rules (context-insensitive):

· · ·
(throw) throw v ,→ err v
(catch-pop) try { v } catch(x) { t } ,→ v
(catch) try { C[err v] } catch(x) { t } ,→ t[v/x]
(label-pop) p : v ,→ v
(break) p : C[break p v] ,→ v
(break-pop) p : C[break p′ v] ,→ break p′ v where p 6= p′

Contraction rules (context-sensitive):

(insen) 〈σ, C[t]〉 → 〈σ, C[t ′]〉 where t ,→ t ′

(ref) 〈σ, C[ref v]〉 → 〈σ[` 7→ v], C[`]〉 where ` 6∈ dom(σ)
(deref) 〈σ, C[deref `]〉 → 〈σ, C[σ(`)]〉
(set-ref) 〈σ, C[`= v]〉 → 〈σ[` 7→ v], C[v]〉 where ` ∈ dom(σ)

In words: We have a notion of labels, locations and a store. Values include labels and
locations and for brevity we omit the remaining constructions. Terms include values and
for brevity we display only three groups of syntactic constructs: for exceptions, for breaks
and for state. For exceptions, a try expression evaluates a body catching any signaled
exceptions, a throw expression signals an exception, and an error expression represents a
signaled exception created by a throw expression. For breaks, a label expression creates a
break point, a break expression transfers control to the label with the value of its body. For
state, a reference expression creates a new mutable cell, a dereference expression reads
the contents of a mutable cell, and an assignment expression updates the contents of a
mutable cell.
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For consistency with Guha et al.’s presentation we have stated the context-insensitive
rules and the context-sensitive rules separately. For our purposes the context-insensitive
rules could just as well be inlined in the context-sensitive rules.

5.6.2 Reduction strategy

For λJS we consider the usual strict reduction strategy where the continuations of try
expressions are treated lazily. Let us spell out the search on terms as a function that
maps a value term to itself and a non-value term to one of: a potential redex; a variable
occurrence; an error expression and its context; or a break expression and its context.
Notationally we denote the latter two as:

Exc= (Term→ Term)× Val 3 C[err v]
Break= (Term→ Term)× Label× Val 3 C[break p v]

The search is carried out with a straight recursive descent on terms where we display just
the the cases for the presented syntax:

Term→ PotRed+ Val+ Exc+ Break
term(`) = `

term(try { t1 } catch(x) { t2 }) = case term(t1) of
| r → r
| v1 → try { v1 } catch(x) { t2 }
| C[err v] → try { C[err v] } catch(x) { t2 }
| C[break p v]→ (try { C } catch(x) { t2 })[break p v]

term(throw t) = case term(t) of
| r → r
| v → throw v
| C[err v] → (throw C)[err v]
| C[break p v]→ (throw C)[break p v]

term(err v) = [ ][err v]
term(p : t) = case term(t) of

| r → r
| v → p : v
| C[err v] → (p : C)[err v]
| C[break p′ v]→ p : C[break p′ v]

term(break p t) = case term(t) of
| r → r
| v → [ ][break p v]
| C[err v] → (break p C)[err v]
| C[break p′ v]→ (break p C)[break p′ v]
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term(ref t) = case term(t) of
| r → r
| v → ref v
| C[err v] → (ref C)[err v]
| C[break p v]→ (ref C)[break p v]

term(deref t) = case term(t) of
| r → r
| v → deref v
| C[err v] → (deref C)[err v]
| C[break p v]→ (deref C)[break p v]

term(t1 = t2) = case term(t1) of
| r → r
| v1 → case term(t2) of

| r → r
| v2 → v1 = v2
| C[err v] → (v1 = C)[err v]
| C[break p v]→ (v1 = C)[break p v]

| C[err v] → (C = t2)[err v]
| C[break p v]→ (C = t2)[break p v]

Term→ PotRed+ Val+ Err
search(t) = case term(t) of

| r → r
| v → v
| C[err v] → error “uncaught exception”
| C[break p v]→ error “undelimited break”

Delimited contexts Defunctionalizing the delimited function-spaces of Exc and Break
gives the following two restrictions on evaluation contexts:

ExcCtx 3 F ::= [ ] | · · · |
throw F |
p : F | break p F |
ref F | deref F | F = t | v = F

BreakCtx 3 G ::= [ ] | · · · |
try { G } catch(x) { t } | throw G |
break p G |
ref G | deref G | G = t | v = G

The grammar of break contexts differs with those of Guha et al. [104, Figure 8] which
does not have the non-terminal “break p G”. This context represents the ability to break
out of a break expression. The absence of this context breaks unique decomposition since
a term such as “p2 : break p1 (break p2 v)” is not a value and has no decomposition.

This omission, which has been corrected in a later revision, illustrates how difficult it
is for semantic engineers to specify reduction contexts, even if they use a tool such as PLT
Redex, which Guha et al. did. In contrast, using the prequel leads to no such omission.
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5.6.3 A reduction semantics

Applying the transformations of Section 5.2 to the search function for λJS yields the gram-
mar of reduction contexts and the decomposition function. Thus we have reconstructed
Guha et al.’s revised reduction semantics for λJS. For space reasons, we omit displaying it
here.

5.6.4 An abstract machine

Applying the syntactic correspondence to the reduction semantics, we can directly derive
an abstract machine to run λJS programs. In contrast, Guha et al. could not directly run the
Mozilla test suite on the evaluator made available by PLT Redex [104, Section 3]. Instead,
they had to design yet another evaluator to run the test suite, creating yet another proof
obligation.

We are in the process of adapting their front end for our abstract machine.

5.6.5 Coroutines for JavaScript

In this section, we show how to add support for coroutines to JavaScript based on the
existing semantics for λJS. This extension is inspired by de Moura et al.’s semantics for
asynchronous coroutines in Lua [79]. We have adapted their semantics as a minimal
extension to the existing semantics for λJS. More concretely, we generalize the semantics
of break expressions in λJS so that instead of discarding the escaped context, the context
is saved as a functional abstraction in the store:

(gbreak) 〈σ, C[p : C ′[break p v]]〉 → 〈σ′, C[v]〉
where σ′ = σ[p 7→ func(x) { return p : C ′[x] }]

By subsequently invoking this abstraction, the captured context is restored with the break
delimiter in place.

We can now specify coroutine operators as syntactic sugar. Here desugaring is param-
eterized by the label of the lexically enclosing coroutine:

¹create tºp = p′ : ¹tºp′ (break p′ p′) where p′ is fresh
¹resume t1 t2ºp = (deref ¹t1ºp) ¹t2ºp

¹yield tºp = break p ¹tºp

Compared to the coroutines in Lua, the ones here can resume themselves. We conjec-
ture that the same generalization provides support for the generators of JavaScript 1.5.

5.6.6 Summary and conclusion

We have constructed a refocus-ready reduction semantics out of a total search function
implementing the reduction strategy for Guha et al.’s λJS. This section illustrates how the
prequel can provide assistance and support for an ongoing effort in semantic engineering.
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5.7 Related work

We are aware of two tools that support the development of syntactic theories and provide
automatic property checking and interpreter construction: SL [221] and PLT Redex [89].
SL automates the construction of unique decomposition proofs. PLT Redex visualizes re-
duction. Neither uses refocusing to derive efficient abstract machines. One reason could
be that, in general, it is difficult to derive a decompose function that can be used for refo-
cusing. As we have shown here, this is not the case when starting from the search strategy.
We therefore hope that the present work can be used to further assist semantic engineers.

5.8 Conclusion and perspectives

We have shown how the specification of a deterministic reduction strategy, in the form of a
compositional search function, provides all of the information needed to mechanically de-
rive a complete specification of a reduction semantics where unique decomposition follows
as a corollary of the search function. Furthermore, the decompose function obtained can
be refocused to mechanically derive an abstract machine. We have illustrated the method
for several languages, including context-sensitive and context-insensitive specifications
using delimited contexts and non-trivial control operators. Finally, we have evaluated the
method by reconstructing a semantics for an actual programming language. In so do-
ing, the method mechanically uncovered several design issues and provided constructive
solutions.

The present work thus provides a practical prequel for automating the construction of
abstract machines via a reduction semantics. Future work includes formalizing the meta-
language for program transformations and developing tools that automate the derivation
of abstract machines and provide mechanically verifiable correctness proofs.
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Chapter 6

Normalization functions for Boolean

propositional formulas

This chapter is joint work with Olivier Danvy and Jacob Johannsen. This chapter is an
extended version of [76]: Olivier Danvy, Jacob Johannsen, and Ian Zerny. A walk in
the semantic park. In Siau-Cheng Khoo and Jeremy Siek, editors, Proceedings of the 2011
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM 2011), pages 1–12, Austin, Texas, January 2011. ACM Press. Invited talk.

Abstract

This article stems from the 20th anniversary of PEPM. It illustrates semantics-based
program manipulation by inter-deriving reduction-based and reduction-free normaliza-
tion functions for Boolean terms. We first consider negational normal forms and then
conjunctive normal forms. The reduction-based normalizers proceed in many reduction
steps: they explicitly implement de Morgan’s laws and the distributivity of disjunctions
over conjunctions by enumerating the reduction sequence according to a given reduc-
tion strategy. The reduction-free normalizers are compositional and in one pass: they
internalize the reduction strategy into an evaluation order and carry out de Morgan’s
laws and the distributivity of disjunctions over conjunctions implicitly, in passing. The
reduction-free negational normalizer is in direct style. The reduction-free conjunctive
normalizer uses delimited continuations and can be expressed in direct style with the
delimited-control operators shift and reset. Each of these semantic artifacts is usually
designed by hand, on a case-by-case basis. Our overarching message here is that they
can all be seamlessly inter-derived.

6.1 Introduction

This work presents the first derivation of a reduction-free algorithm from a reduction-
based algorithm that is not refocusable: conjunctive normalization of Boolean terms.

The normalization of Boolean terms into negational normal form and subsequent nor-
malization into conjunctive normal form can be equivalently viewed as reduction-based,
small-step processes, where the reduction rules are repeatedly applied until a normal form
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is obtained, and as reduction-free, big-step processes, where a given Boolean term is recur-
sively traversed in one fell swoop. Occasionally, the normalization is also specified with
an abstract machine, which can itself be equally viewed as a small-step process and as a
big-step one [67].

The goal of this article is to inter-derive these normalization processes using the pro-
gram transformations used in the Reynolds functional correspondence between evaluators
and big-step abstract machines [5, 176] and in the syntactic correspondence between cal-
culi and small-step abstract machines [27], to which we add a new prequel.

Overview In Section 6.2, we specify the abstract syntax of Boolean terms, of negational
normal forms, and of conjunctive normal forms. The derivation is then organized in two
steps. In Section 6.3, we inter-derive the normalization of Boolean terms into negational
normal form, listing each intermediate step in full detail. In Section 6.4, we inter-derive
the normalization of negational normal forms into conjunctive normal forms, succinctly
reusing the same presentation as in Section 6.3. For emphasis, the presentations of Sec-
tions 6.3.1 to 6.3.4 and 6.4.1 to 6.4.4 are deliberately parallel, so that the reader can
easily identify what is generic to the methodology and what is specific to each example.
Throughout we use pure Standard ML as a functional meta-language and additionally
make use of the delimited control operators shift and reset for the direct-style normal-
izer in Section 6.4.5. This article is meant to be self-contained, but in case of doubt, the
reader should consult the first author’s lecture notes at the Sixth International School on
Advanced Functional Programming [61].

6.2 Domain of discourse

We consider Boolean terms of conjunctions, disjunctions and negations:

t ::= x | ¬t | t ∧ t | t ∨ t

De Morgan’s laws provide conversion rules between Boolean terms, where negations float
up or down an abstract syntax tree:

¬(¬t)↔ t
¬(t1 ∧ t2)↔ (¬t1)∨ (¬t2)
¬(t1 ∨ t2)↔ (¬t1)∧ (¬t2)

These conversion rules can be oriented into reduction rules. For example, the following
reduction rules make negations float down the abstract syntax tree of a given term:

¬(¬t)→ t
¬(t1 ∧ t2)→ (¬t1)∨ (¬t2)
¬(t1 ∨ t2)→ (¬t1)∧ (¬t2)

Any Boolean term can be reduced into a negational normal form, where only variables are
negated:

l ::= x | ¬x
tnnf ::= l | tnnf ∧ tnnf | tnnf ∨ tnnf

A negational normal form is thus a mixed tree of conjunctions and disjunctions of literals.
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Likewise, the distributivity laws provide conversion rules between negational normal
forms, where disjunctions float up or down an abstract-syntax tree:

tnnf1 ∨ (tnnf2 ∧ tnnf3)↔ (tnnf1 ∨ tnnf2)∧ (tnnf1 ∨ tnnf3)
(tnnf1 ∧ tnnf2)∨ tnnf3 ↔ (tnnf1 ∨ tnnf3)∧ (tnnf2 ∨ tnnf3)

These conversion rules can be oriented into reduction rules. For example, the following
reduction rules make disjunctions float down the abstract syntax tree of a given term in
negational normal form:

tnnf1 ∨ (tnnf2 ∧ tnnf3)→ (tnnf1 ∨ tnnf2)∧ (tnnf1 ∨ tnnf3)
(tnnf1 ∧ tnnf2)∨ tnnf3 → (tnnf1 ∨ tnnf3)∧ (tnnf2 ∨ tnnf3)

Any Boolean term in negational normal form can be reduced into a conjunctive normal
form, where conjunctions, disjunctions and literals are stratified:

l ::= x | ¬x
tdnf ::= tdnf ∨ tdnf | l
tcnf ::= tcnf ∧ tcnf | tdnf

A conjunctive normal form is thus a stratified tree of conjunctions of disjunctions of literals.

Terms A Boolean term is either a variable, a negated term, a conjunction of two terms,
or a disjunction of two terms. We implement Boolean terms with the following ML data
type:

datatype term = VAR of ide
| NEG of term
| CONJ of term * term
| DISJ of term * term

The fold functional associated to this data type abstracts its recursive descent by parame-
terizing what to do in each case:

(* (ide -> ’a) * (’a -> ’a) * (’a * ’a -> ’a) * (’a * ’a -> ’a) -> term -> ’a *)
fun term_foldr (var, neg, conj, disj) t

= let fun visit (VAR x) = var x
| visit (NEG t) = neg (visit t)
| visit (CONJ (t1, t2)) = conj (visit t1, visit t2)
| visit (DISJ (t1, t2)) = disj (visit t1, visit t2)

in visit t
end

The ML encoding of terms is an adequate representation of t:

Proposition 16 (Adequacy of Boolean terms). There is a bijection between Boolean terms
in the grammar of t and values in the data type term.

Since we have no structural properties on Boolean terms, e.g., substitution, a bijection is
sufficient to ensure adequacy of the representation.
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Negational normal forms A Boolean term is in negational normal form when only its
variables are negated. Since ML does not support subtyping, we implement negational
normal forms with the following specialized data types:

datatype literal = POSVAR of ide
| NEGVAR of ide

datatype term_nnf = LIT_nnf of literal
| CONJ_nnf of term_nnf * term_nnf
| DISJ_nnf of term_nnf * term_nnf

The fold functional associated to this data type abstracts its recursive descent by parame-
terizing what to do in each case:

(* (ide -> ’a) * (ide -> ’a) * (’a -> ’a) * (’a * ’a -> ’a) * (’a * ’a -> ’a) *)
(* -> term_nnf -> ’a *)
fun term_nnf_foldr (posvar, negvar, lit, conj, disj) t

= let fun visit_l (POSVAR x) = posvar x
| visit_l (NEGVAR x) = negvar x

fun visit_n (LIT_nnf l) = lit (visit_l l)
| visit_n (CONJ_nnf (n1, n2)) = conj (visit_n n1, visit_n n2)
| visit_n (DISJ_nnf (n1, n2)) = disj (visit_n n1, visit_n n2)

in visit_n t
end

For example, a negational normal form is dualized by recursively mapping positive occur-
rences of variables to negative ones, negative occurrences of variables to positive ones,
conjunctions to disjunctions, and disjunctions to conjunctions:

(* term_nnf -> term_nnf *)
fun dualize t

= term_nnf_foldr (NEGVAR, POSVAR, LIT_nnf, DISJ_nnf, CONJ_nnf) t

For another example, a negational normal form is embedded into a Boolean term by map-
ping every specialized constructor into the corresponding original constructor(s):

(* term_nnf -> term *)
fun embed_nnf t

= term_nnf_foldr (VAR, fn x => NEG (VAR x), fn t => t, CONJ, DISJ) t

The ML encoding of negational normal forms is an adequate representation of tnnf :

Proposition 17 (Adequacy of negational normal forms). There is a bijection between nega-
tional normal forms in the grammar of tnnf and values in the data type term_nnf.

Conjunctive normal forms A Boolean term is in conjunctive normal form when it is
stratified as conjunctions of disjunctions of literals. Again, since ML does not support
subtyping, we implement normal forms with the following specialized data types:

datatype disj_cnf = DISJ_leaf of literal
| DISJ_node of disj_cnf * disj_cnf

datatype conj_cnf = CONJ_leaf of disj_cnf
| CONJ_node of conj_cnf * conj_cnf

type term_cnf = conj_cnf

The fold functional associated to this data type abstracts its recursive descent by parame-
terizing what to do in each case:
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(* (ide -> ’b) * (ide -> ’b) * (’b * ’b -> ’a) * (’a * ’a -> ’a) -> term_cnf -> ’a *)
fun term_cnf_foldr (posvar, negvar, lit, conj, disj) t

= let fun visit_l (POSVAR x) = posvar x
| visit_l (NEGVAR x) = negvar x

fun visit_d (DISJ_leaf l) = lit (visit_l l)
| visit_d (DISJ_node (d1, d2)) = disj (visit_d d1, visit_d d2)

fun visit_c (CONJ_leaf d) = visit_d d
| visit_c (CONJ_node (c1, c2)) = conj (visit_c c1, visit_c c2)

in visit_c t
end

A conjunctive normal form is embedded into a negational normal form by mapping every
specialized constructor into the corresponding original constructor:

(* term_cnf -> term_nnf *)
fun embed_cnf t

= term_cnf_foldr (POSVAR, NEGVAR, LIT_nnf, CONJ_nnf, DISJ_nnf) t

The ML encoding of conjunctive normal forms is an adequate representation of tcnf :

Proposition 18 (Adequacy of conjunctive normal forms). There is a bijection between
conjunctive normal forms in the grammar of tcnf and values in the data type term_cnf.

6.3 Leftmost outermost negational normalization

In this section, we consider negational normal forms. We go from a leftmost-outermost
reduction strategy to the corresponding leftmost-outermost evaluation strategy. We first
implement the reduction strategy (Section 6.3.1) as a prequel to implementing the corre-
sponding reduction semantics (Section 6.3.2). We then turn to the syntactic correspon-
dence between reduction semantics and abstract machines (Section 6.3.3) and to the
functional correspondence between abstract machines and normalization functions (Sec-
tion 6.3.4).

6.3.1 Prequel to a reduction semantics

The reduction strategy induces a notion of value and of potential redex (i.e., of a term
that is an actual redex or that is stuck); we are then in position to state a compositional
search function that implements the reduction strategy and maps a given term either to the
corresponding value, if it is in normal form, or to a potential redex (Section 6.3.1). From
this search function, we derive a decomposition function mapping a given term either to
the corresponding value, if it is in normal form, or to a potential redex and its reduction
context (Section 6.3.1). As a corollary, we can then state the associated recomposition
function that maps a reduction context and a contractum to the corresponding reduct
(Section 6.3.1).

The reduction strategy

The reduction strategy consists in locating the leftmost-outermost negation of a term
which is not a variable. A value therefore is a term where only variables are negated,
i.e., a negational normal form:

type value = term_nnf
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A potential redex is the negation of a term that is not a variable:

datatype potential_redex = PR_NEG of term
| PR_CONJ of term * term
| PR_DISJ of term * term

The following compositional search function implements the reduction strategy. It searches
a potential redex depth-first and from left to right, using an auxiliary function for negated
subterms:

datatype found = VAL of value
| POTRED of potential_redex

(* term -> found *)
fun search_term_neg (VAR x) = VAL (LIT_nnf (NEGVAR x))
| search_term_neg (NEG t) = POTRED (PR_NEG t)
| search_term_neg (CONJ (t1, t2)) = POTRED (PR_CONJ (t1, t2))
| search_term_neg (DISJ (t1, t2)) = POTRED (PR_DISJ (t1, t2))

(* term -> found *)
fun search_term (VAR x)

= VAL (LIT_nnf (POSVAR x))
| search_term (NEG t)
= search_term_neg t

| search_term (CONJ (t1, t2))
= (case search_term t1

of (VAL v1)
=> (case search_term t2

of (VAL v2)
=> VAL (CONJ_nnf (v1, v2))

| (POTRED pr)
=> POTRED pr)

| (POTRED pr)
=> POTRED pr)

| search_term (DISJ (t1, t2))
= (case search_term t1

of (VAL v1)
=> (case search_term t2

of (VAL v2)
=> VAL (DISJ_nnf (v1, v2))

| (POTRED pr)
=> POTRED pr)

| (POTRED pr)
=> POTRED pr)

(* term -> found *)
fun search t = search_term t

When a negation is encountered, the auxiliary function search_term_neg is called to
decide whether this negation is a value or a potential redex.

By adequacy of our representation, the search function defines a reduction strategy:

Definition 19. The search function finds the leftmost outermost redex in the input term.

From searching to decomposing

Let us transform the search function of Section 6.3.1 into a decomposition function for
the reduction semantics of Section 6.3.2. The only difference between searching and
decomposing is that given a non-value term, searching yields a potential redex whereas
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decomposing yields a potential redex and its reduction context, i.e., a decomposition. This
reduction context is the defunctionalized continuation of the search function, and we
construct it as such, by (1) CPS-transforming the search function (and simplifying it one
bit) and (2) defunctionalizing its continuation.

CPS transformation The search function is CPS-transformed by naming its interme-
diate results, sequentializing their computation, and introducing an extra functional ar-
gument, the continuation, that maps an intermediate result to a final answer:

(* term * (found -> ’a) -> ’a *)
fun search1_term_neg (VAR x, k) = k (VAL (LIT_nnf (NEGVAR x)))
| search1_term_neg (NEG t, k) = k (POTRED (PR_NEG t))
| search1_term_neg (CONJ (t1, t2), k) = k (POTRED (PR_CONJ (t1, t2)))
| search1_term_neg (DISJ (t1, t2), k) = k (POTRED (PR_DISJ (t1, t2)))

(* term * (found -> ’a) -> ’a *)
fun search1_term (VAR x, k)

= k (VAL (LIT_nnf (POSVAR x)))
| search1_term (NEG t, k)
= search1_term_neg (t, k)

| search1_term (CONJ (t1, t2), k)
= search1_term (t1,

fn (VAL v1)
=> search1_term (t2,

fn (VAL v2)
=> k (VAL (CONJ_nnf (v1, v2)))

| (POTRED pr)
=> k (POTRED pr))

| (POTRED pr)
=> k (POTRED pr))

| search1_term (DISJ (t1, t2), k)
= search1_term (t1,

fn (VAL v1)
=> search1_term (t2,

fn (VAL v2)
=> k (VAL (DISJ_nnf (v1, v2)))

| (POTRED pr)
=> k (POTRED pr))

| (POTRED pr)
=> k (POTRED pr))

(* term -> found *)
fun search1 t = search1_term (t, fn f => f)

Simplifying the CPS-transformed search The search is completed as soon as a po-
tential redex is found. It can thus be simplified by only applying the continuation when a
value is found:

(* term * (value -> found) -> found *)
fun search2_term_neg (VAR x, k) = k (LIT_nnf (NEGVAR x))
| search2_term_neg (NEG t, k) = POTRED (PR_NEG t)
| search2_term_neg (CONJ (t1, t2), k) = POTRED (PR_CONJ (t1, t2))
| search2_term_neg (DISJ (t1, t2), k) = POTRED (PR_DISJ (t1, t2))

(* term * (value -> found) -> found *)
fun search2_term (VAR x, k)

= k (LIT_nnf (POSVAR x))
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| search2_term (NEG t, k)
= search2_term_neg (t, k)

| search2_term (CONJ (t1, t2), k)
= search2_term (t1, fn v1 =>

search2_term (t2, fn v2 =>
k (CONJ_nnf (v1, v2))))

| search2_term (DISJ (t1, t2), k)
= search2_term (t1, fn v1 =>

search2_term (t2, fn v2 =>
k (DISJ_nnf (v1, v2))))

(* term -> found *)
fun search2 t = search2_term (t, fn v => VAL v)

Potential redexes are now returned directly and the VAL constructor is relegated to the
initial continuation.

Defunctionalization To defunctionalize the continuation, we first enumerate the in-
habitants of its function space. These inhabitants arise from the initial continuation in
the definition of search2 and in the 4 intermediate continuations in the definition of
search2_term. We therefore partition the continuation with these 5 functional abstrac-
tions, 4 of which have free variables. We then represent this partition as

• a data type with 5 constructors that are parameterized with the free variables of the
corresponding function abstraction, together with

• a function apply3_cont dispatching upon these 5 summands and mapping them to
the corresponding function abstractions:

datatype cont = C0
| C1 of value * cont
| C2 of cont * term
| C3 of value * cont
| C4 of cont * term

(* cont -> value -> found *)
fun apply3_cont C0 = (fn v => VAL v)
| apply3_cont (C1 (v1, k)) = (fn v2 => apply3_cont k (CONJ_nnf (v1, v2)))
| apply3_cont (C2 (k, t2)) = (fn v1 => search3_term (t2, C1 (v1, k)))
| apply3_cont (C3 (v1, k)) = (fn v2 => apply3_cont k (DISJ_nnf (v1, v2)))
| apply3_cont (C4 (k, t2)) = (fn v1 => search3_term (t2, C3 (v1, k)))

(* term * cont -> found *)
and search3_term_neg (VAR x, k) = apply3_cont k (LIT_nnf (NEGVAR x))
| search3_term_neg (NEG t, k) = POTRED (PR_NEG t)
| search3_term_neg (CONJ (t1, t2), k) = POTRED (PR_CONJ (t1, t2))
| search3_term_neg (DISJ (t1, t2), k) = POTRED (PR_DISJ (t1, t2))

(* term * cont -> found *)
and search3_term (VAR x, k) = apply3_cont k (LIT_nnf (POSVAR x))
| search3_term (NEG t, k) = search3_term_neg (t, k)
| search3_term (CONJ (t1, t2), k) = search3_term (t1, C2 (k, t2))
| search3_term (DISJ (t1, t2), k) = search3_term (t1, C4 (k, t2))

(* term -> found *)
fun search3 t = search3_term (t, C0)
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This data type of defunctionalized continuations is that of reduction contexts [57].
We have defined apply3_cont in curried form to emphasize that it maps each sum-

mand to a continuation. In the following, we consider its uncurried definition.

Decomposition We are now in position to extend the search function to not only return
a potential redex (if one exists) but also its reduction context. The result is the decompo-
sition function of a reduction semantics, where value_or_decomposition, decompose,
decompose_term, decompose_term_neg, and decompose_cont are the respective clones
of found, search3, search3_term, search3_term_neg, and apply3_cont:

datatype value_or_decomposition = VAL of value
| DEC of potential_redex * cont

(* cont * value -> value_or_decomposition *)
fun decompose_cont (C0, v ) = VAL v
| decompose_cont (C1 (v1, k), v2) = decompose_cont (k, CONJ_nnf (v1, v2))
| decompose_cont (C2 (k, t2), v1) = decompose_term (t2, C1 (v1, k))
| decompose_cont (C3 (v1, k), v2) = decompose_cont (k, DISJ_nnf (v1, v2))
| decompose_cont (C4 (k, t2), v1) = decompose_term (t2, C3 (v1, k))

(* term * cont -> value_or_decomposition *)
and decompose_term_neg (VAR x, k) = decompose_cont (k, LIT_nnf (NEGVAR x))
| decompose_term_neg (NEG t, k) = DEC (PR_NEG t, k)
| decompose_term_neg (CONJ (t1, t2), k) = DEC (PR_CONJ (t1, t2), k)
| decompose_term_neg (DISJ (t1, t2), k) = DEC (PR_DISJ (t1, t2), k)

(* term * cont -> value_or_decomposition *)
and decompose_term (VAR x, k) = decompose_cont (k, LIT_nnf (POSVAR x))
| decompose_term (NEG t, k) = decompose_term_neg (t, k)
| decompose_term (CONJ (t1, t2), k) = decompose_term (t1, C2 (k, t2))
| decompose_term (DISJ (t1, t2), k) = decompose_term (t1, C4 (k, t2))

(* term -> value_or_decomposition *)
fun decompose t = decompose_term (t, C0)

Recomposing

A reduction context is recomposed around a term with a left fold over this context:

(* cont * term -> term *)
fun recompose (C0, t ) = t
| recompose (C1 (v1, k), t2) = recompose (k, CONJ (embed_nnf v1, t2))
| recompose (C2 (k, t2), t1) = recompose (k, CONJ (t1, t2))
| recompose (C3 (v1, k), t2) = recompose (k, DISJ (embed_nnf v1, t2))
| recompose (C4 (k, t2), t1) = recompose (k, DISJ (t1, t2))

Proposition 20 (left inverseness). Given a function pr2t mapping a potential redex to the
corresponding term,

forall t,
decompose t = DEC (pr, k)
=>
recompose (k, pr2t pr) = t
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6.3.2 A reduction semantics

We are now fully equipped to implement a reduction semantics for negational normaliza-
tion.

Notion of reduction

The reduction rules implement the De Morgan laws:

datatype contractum_or_error = CONTRACTUM of term
| ERROR of string

(* potential_redex -> contractum_or_error *)
fun contract (PR_NEG t) = CONTRACTUM t
| contract (PR_CONJ (t1, t2)) = CONTRACTUM (DISJ (NEG t1, NEG t2))
| contract (PR_DISJ (t1, t2)) = CONTRACTUM (CONJ (NEG t1, NEG t2))

In the present case, all potential redexes are actual ones, i.e., no terms are stuck.

One-step reduction

Given a non-value term, a one-step reduction function (1) decomposes this non-value
term into a potential redex and a reduction context, (2) contracts the potential redex if it
is an actual one, and (3) recomposes the reduction context with the contractum.

◦ reduce //

decompose $$

◦

◦
contract

// ◦
recompose

::

If the potential redex is not an actual one, reduction is stuck. Given a value term, reduction
is also stuck:

datatype reduct_or_stuck = REDUCT of term
| STUCK of string

(* term -> reduct_or_stuck *)
fun reduce t

= (case decompose t
of (VAL v)

=> STUCK "irreducible term"
| (DEC (pr, k))
=> (case contract pr

of (CONTRACTUM t’) => REDUCT (recompose (k, t’))
| (ERROR s) => STUCK s))

This one-step reduction function is the hallmark of a reduction semantics [85, 89]:

Property 21 (soundness). Let t represent t and t’ represent t ′. If reduce t evaluates
to REDUCT t’ then t reduces in one step by leftmost outermost reduction to t ′.
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Reduction-based normalization

A reduction-based normalization function is one that iterates the one-step reduction func-
tion until it yields a value or becomes stuck:

◦ reduce //

decompose ��

◦ reduce //

��

◦ reduce //

��

◦

◦
contract

// ◦

AA

◦
contract

// ◦

AA

◦
contract

// ◦
recompose

AA

If it yields a value, this value is the result of evaluation, and if it becomes stuck, evaluation
goes wrong:

datatype result_or_wrong = RESULT of value
| WRONG of string

The following definition uses decompose to distinguish between value and non-value
terms:

(* value_or_decomposition -> result_or_wrong *)
fun iterate (VAL v)

= RESULT v
| iterate (DEC (pr, k))
= (case contract pr

of (CONTRACTUM t’) => iterate (decompose (recompose (k, t’)))
| (ERROR s) => WRONG s)

(* term -> result_or_wrong *)
fun normalize t = iterate (decompose t)

Property 22 (soundness). Let t represent t and v represent v. If normalize t evaluates
to RESULT v then t reduces to v by leftmost outermost reduction.

6.3.3 From reduction-based to reduction-free normalization

In this section, we transform the reduction-based normalization function of Section 6.3.2
into a family of reduction-free normalization functions, i.e., functions that do not enu-
merate the reduction sequence and where no intermediate reduct is ever constructed.
We first refocus the reduction-based normalization function to deforest the intermedi-
ate reducts [71, 197], and we obtain a small-step abstract machine implementing the
iteration of the refocus function (Section 6.3.3). After inlining the contraction function
(Section 6.3.3), we transform this small-step abstract machine into a big-step one [67]
(Section 6.3.3). This machine exhibits a number of corridor transitions, and we compress
them (Section 6.3.3). We also opportunistically specialize its contexts (Section 6.3.3).
The resulting abstract machine is in defunctionalized form [70], and we refunctionalize
it [69] (Section 6.3.4). The result is in continuation-passing style and we re-express it in
direct style [56] (Section 6.3.4). The resulting direct-style function is a traditional conver-
sion function for Boolean formulas; in particular, it is compositional. We express it with
one recursive descent using term_foldr (Section 6.3.4).
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Modus operandi In each of the following subsections, we derive successive versions of
the normalization function, indexing its components with the number of the subsection.

Refocusing

The normalization function of Section 6.3.2 is reduction-based because it constructs every
intermediate term in the reduction sequence. In its definition, decompose is always ap-
plied to the result of recompose after the first decomposition. In fact, a vacuous initial call
to recompose ensures that in all cases, decompose is applied to the result of recompose:

fun normalize t = iterate (decompose (recompose (C0, t)))

We can factor out these composite calls in a function, refocus0, that maps a contrac-
tum and its reduction context to the next potential redex and the next reduction context,
if such a pair exists, in the reduction sequence:

(* term * cont -> value_or_decomposition *)
fun refocus0 (t, k) = decompose (recompose (k, t))

(* value_or_decomposition -> result_or_wrong *)
fun iterate0 (VAL v)

= RESULT v
| iterate0 (DEC (pr, k))
= (case contract pr

of (CONTRACTUM t’) => iterate0 (refocus0 (t’, k))
| (ERROR s) => WRONG s)

(* term -> result_or_wrong *)
fun normalize0 t = iterate0 (refocus0 (t, C0))

Refocusing, extensionally The refocus function goes from a redex site to the next redex
site, if there is one.

Refocusing, intensionally As investigated by Nielsen and the first author [71], the refo-
cus function can be deforested to avoid constructing any intermediate reduct [214].
Such a deforestation makes the normalization function reduction-free. The defor-
ested version of refocus is optimally defined as continuing the decomposition of the
contractum in the current context, i.e., as decompose_term:

(* term * cont -> value_or_decomposition *)
fun refocus1 (t, k) = decompose_term (t, k)

The refocused evaluation function therefore reads as follows:

(* value_or_decomposition -> result_or_wrong *)
fun iterate1 (VAL v)

= RESULT v
| iterate1 (DEC (pr, k))
= (case contract pr

of (CONTRACTUM t’) => iterate1 (refocus1 (t’, k))
| (ERROR s) => WRONG s)

(* term -> result_or_wrong *)
fun normalize1 t = iterate1 (refocus1 (t, C0))
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This refocused normalization function is reduction-free because it is no longer based on
a (one-step) reduction function and it no longer enumerates the successive reducts in the
reduction sequence:

◦ reduce //

decompose ��

◦ reduce //

��

◦ reduce //

��

◦

// ◦
contract

// ◦

AA

refocus // ◦
contract

// ◦

AA

refocus // ◦
contract

// ◦
recompose

AA

In the rest of this section, we mechanically transform this reduction-free normalization
function into an abstract machine.

Inlining the contraction function

We first unfold the call to contract in the definition of iterate1, and name the resulting
function iterate2. Reasoning by inversion, there are three potential redexes and there-
fore the DEC clause in the definition of iterate1 is replaced by three DEC clauses in the
definition of iterate2:

(* term * cont -> value_or_decomposition *)
fun refocus2 (t, k) = decompose_term (t, k)

(* value_or_decomposition -> result_or_wrong *)
fun iterate2 (VAL v)

= RESULT v
| iterate2 (DEC (PR_NEG t, k))
= iterate2 (refocus2 (t, k))

| iterate2 (DEC (PR_CONJ (t1, t2), k))
= iterate2 (refocus2 (DISJ (NEG t1, NEG t2), k))

| iterate2 (DEC (PR_DISJ (t1, t2), k))
= iterate2 (refocus2 (CONJ (NEG t1, NEG t2), k))

(* term -> result_or_wrong *)
fun normalize2 t = iterate2 (refocus2 (t, C0))

Lightweight fusion: from small-step abstract machine to big-step abstract
machine

The refocused normalization function is a small-step abstract machine in the sense that
refocus2 (i.e., decompose_term, decompose_term_neg and decompose_cont) acts as an
inner transition function and iterate2 as an outer transition function. The outer tran-
sition function (also known as a ‘driver loop’ and as a ‘trampoline’ [98]) keeps activat-
ing the inner transition function until a value is obtained. Using Ohori and Sasano’s
‘lightweight fusion by fixed-point promotion’ [67, 155], we fuse iterate2 and refocus2
(i.e., decompose_term, decompose_term_neg and decompose_cont) so that the resulting
function iterate3 is directly applied to the result of decompose_term, decompose_term_neg
and decompose_cont. The result is a big-step abstract machine [171] consisting of four
(mutually tail-recursive) state-transition functions:
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• normalize3_term is the composition of iterate2 and decompose_term and a clone
of decompose_term;

• normalize3_term_neg is the composition of iterate2 and decompose_term_neg
and a clone of decompose_term_neg;

• normalize3_cont is the composition of iterate2 and decompose_cont that di-
rectly calls iterate3 over a value or a decomposition instead of returning it to
iterate2 as decompose_cont did;

• iterate3 is a clone of iterate2 that calls the fused function normalize3_term.

• normalize3 is a clone of normalize that calls the fused function normalize3_term.

(* cont * value -> result_or_wrong *)
fun normalize3_cont (C0, v)

= iterate3 (VAL v)
| normalize3_cont (C1 (v1, k), v2)
= normalize3_cont (k, CONJ_nnf (v1, v2))

| normalize3_cont (C2 (k, t2), v1)
= normalize3_term (t2, C1 (v1, k))

| normalize3_cont (C3 (v1, k), v2)
= normalize3_cont (k, DISJ_nnf (v1, v2))

| normalize3_cont (C4 (k, t2), v1)
= normalize3_term (t2, C3 (v1, k))

(* term * cont -> result_or_wrong *)
and normalize3_term_neg (VAR x, k)

= normalize3_cont (k, LIT_nnf (NEGVAR x))
| normalize3_term_neg (NEG t, k)
= iterate3 (DEC (PR_NEG t, k))

| normalize3_term_neg (CONJ (t1, t2), k)
= iterate3 (DEC (PR_CONJ (t1, t2), k))

| normalize3_term_neg (DISJ (t1, t2), k)
= iterate3 (DEC (PR_DISJ (t1, t2), k))

(* term * cont -> result_or_wrong *)
and normalize3_term (VAR x, k)

= normalize3_cont (k, LIT_nnf (POSVAR x))
| normalize3_term (NEG t, k)
= normalize3_term_neg (t, k)

| normalize3_term (CONJ (t1, t2), k)
= normalize3_term (t1, C2 (k, t2))

| normalize3_term (DISJ (t1, t2), k)
= normalize3_term (t1, C4 (k, t2))

(* value_or_decomposition -> result_or_wrong *)
and iterate3 (VAL v)

= RESULT v
| iterate3 (DEC (PR_NEG t, k))
= normalize3_term (t, k)

| iterate3 (DEC (PR_CONJ (t1, t2), k))
= normalize3_term (DISJ (NEG t1, NEG t2), k)

| iterate3 (DEC (PR_DISJ (t1, t2), k))
= normalize3_term (CONJ (NEG t1, NEG t2), k)

(* term -> result_or_wrong *)
fun normalize3 t = normalize3_term (t, C0)

106



6.3. Leftmost outermost negational normalization

Hereditary transition compression

In the abstract machine of Section 6.3.3, many of the transitions are ‘corridor’ ones in that
they yield configurations for which there is a unique further transition. Let us hereditarily
compress these transitions. To this end, we cut-and-paste the transition functions above,
renaming their indices from 3 to 4. We consider each of their clauses in turn:

Clause normalize4_cont (C0, v):

normalize4_cont (C0, v)
= (* by inlining normalize4_cont *)
iterate4 (VAL v)
= (* by inlining iterate4 *)
RESULT v

Clause normalize4_term_neg (NEG t, k):

normalize4_term_neg (NEG t, k)
= (* by inlining normalize4_term_neg *)
iterate4 (DEC (PR_NEG t, k))
= (* by inlining iterate4 *)
normalize3_term (t, k)

Clause normalize4_term_neg (CONJ (t1, t2), k):

normalize4_term_neg (CONJ (t1, t2), k)
= (* by inlining normalize4_term_neg *)
iterate4 (DEC (PR_CONJ (t1, t2), k))
= (* by inlining iterate4 *)
normalize4_term (DISJ (NEG t1, NEG t2), k)
= (* by inlining normalize4_term *)
normalize4_term (NEG t1, C4 (k, NEG t2))
= (* by inlining normalize4_term *)
normalize4_term_neg (t1, C4 (k, NEG t2))

Clause normalize4_term_neg (DISJ (t1, t2), k):

normalize4_term_neg (DISJ (t1, t2), k)
= (* by inlining normalize4_term_neg *)
iterate4 (DEC (PR_DISJ (t1, t2), k))
= (* by inlining iterate4 *)
normalize4_term (CONJ (NEG t1, NEG t2), k)
= (* by inlining normalize4_term *)
normalize4_term (NEG t1, C2 (k, NEG t2))
= (* by inlining normalize4_term *)
normalize4_term_neg (t1, C2 (k, NEG t2))

As a corollary of the compressions, the definition of iterate3 is now unused and can be
omitted. The resulting abstract machine reads as follows:

(* cont * value -> result_or_wrong *)
fun normalize4_cont (C0, v)

= RESULT v
| normalize4_cont (C1 (v1, k), v2)
= normalize4_cont (k, CONJ_nnf (v1, v2))

| normalize4_cont (C2 (k, t2), v1)
= normalize4_term (t2, C1 (v1, k))

| normalize4_cont (C3 (v1, k), v2)
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= normalize4_cont (k, DISJ_nnf (v1, v2))
| normalize4_cont (C4 (k, t2), v1)
= normalize4_term (t2, C3 (v1, k))

(* term * cont -> result_or_wrong *)
and normalize4_term_neg (VAR x, k)

= normalize4_cont (k, LIT_nnf (NEGVAR x))
| normalize4_term_neg (NEG t, k)
= normalize4_term (t, k)

| normalize4_term_neg (CONJ (t1, t2), k)
= normalize4_term_neg (t1, C4 (k, NEG t2))

| normalize4_term_neg (DISJ (t1, t2), k)
= normalize4_term_neg (t1, C2 (k, NEG t2))

(* term * cont -> result_or_wrong *)
and normalize4_term (VAR x, k)

= normalize4_cont (k, LIT_nnf (POSVAR x))
| normalize4_term (NEG t, k)
= normalize4_term_neg (t, k)

| normalize4_term (CONJ (t1, t2), k)
= normalize4_term (t1, C2 (k, t2))

| normalize4_term (DISJ (t1, t2), k)
= normalize4_term (t1, C4 (k, t2))

(* term -> result_or_wrong *)
fun normalize4 t = normalize4_term (t, C0)

Context specialization

To symmetrize the definitions of normalize4_term and normalize4_term_neg, we in-
troduce two specialized contexts for C2 and C4, and we specialize normalize4_cont to
directly call normalize5_term_neg for the new contexts C2NEG and C4NEG:

datatype cont = C0
| C1 of value * cont
| C2 of cont * term
| C2NEG of cont * term
| C3 of value * cont
| C4 of cont * term
| C4NEG of cont * term

(* cont * value -> result_or_wrong *)
fun normalize5_cont (C0, v)

= RESULT v
| normalize5_cont (C1 (v1, k), v2)
= normalize5_cont (k, CONJ_nnf (v1, v2))

| normalize5_cont (C2 (k, t2), v1)
= normalize5_term (t2, C1 (v1, k))

| normalize5_cont (C2NEG (k, t2), v1)
= normalize5_term_neg (t2, C1 (v1, k))

| normalize5_cont (C3 (v1, k), v2)
= normalize5_cont (k, DISJ_nnf (v1, v2))

| normalize5_cont (C4 (k, t2), v1)
= normalize5_term (t2, C3 (v1, k))

| normalize5_cont (C4NEG (k, t2), v1)
= normalize5_term_neg (t2, C3 (v1, k))

(* term * cont -> result_or_wrong *)
and normalize5_term_neg (VAR x, k)
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= normalize5_cont (k, LIT_nnf (NEGVAR x))
| normalize5_term_neg (NEG t, k)
= normalize5_term (t, k)

| normalize5_term_neg (CONJ (t1, t2), k)
= normalize5_term_neg (t1, C4NEG (k, t2))

| normalize5_term_neg (DISJ (t1, t2), k)
= normalize5_term_neg (t1, C2NEG (k, t2))

(* term * cont -> result_or_wrong *)
and normalize5_term (VAR x, k)

= normalize5_cont (k, LIT_nnf (POSVAR x))
| normalize5_term (NEG t, k)
= normalize5_term_neg (t, k)

| normalize5_term (CONJ (t1, t2), k)
= normalize5_term (t1, C2 (k, t2))

| normalize5_term (DISJ (t1, t2), k)
= normalize5_term (t1, C4 (k, t2))

(* term -> result_or_wrong *)
fun normalize5 t = normalize5_term (t, C0)

6.3.4 From abstract machines to normalization functions

In this section, we transform the abstract machine of Section 6.3.3 into two composi-
tional normalization functions, one in continuation-passing style (Section 6.3.4) and one
in direct style (Section 6.3.4).

Refunctionalization

Like many other big-step abstract machines [5, 61], the abstract machine of Section 6.3.3
is in defunctionalized form [70]: the reduction contexts, together with normalize5_cont,
are the first-order counterpart of a function. This function is introduced with the data-type
constructors C0, etc., and eliminated with calls to the dispatching function normalize5_cont.
The higher-order counterpart of this abstract machine reads as follows:

(* term * (value -> ’a) -> ’a *)
fun normalize6_term_neg (VAR x, k)

= k (LIT_nnf (NEGVAR x))
| normalize6_term_neg (NEG t, k)
= normalize6_term (t, k)

| normalize6_term_neg (CONJ (t1, t2), k)
= normalize6_term_neg (t1, fn v1 =>

normalize6_term_neg (t2, fn v2 =>
k (DISJ_nnf (v1, v2))))

| normalize6_term_neg (DISJ (t1, t2), k)
= normalize6_term_neg (t1, fn v1 =>

normalize6_term_neg (t2, fn v2 =>
k (CONJ_nnf (v1, v2))))

(* term * (value -> ’a) -> ’a *)
and normalize6_term (VAR x, k)

= k (LIT_nnf (POSVAR x))
| normalize6_term (NEG t, k)
= normalize6_term_neg (t, k)

| normalize6_term (CONJ (t1, t2), k)
= normalize6_term (t1, fn v1 =>

normalize6_term (t2, fn v2 =>
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k (CONJ_nnf (v1, v2))))
| normalize6_term (DISJ (t1, t2), k)
= normalize6_term (t1, fn v1 =>

normalize6_term (t2, fn v2 =>
k (DISJ_nnf (v1, v2))))

(* term -> result_or_wrong *)
fun normalize6 t = normalize6_term (t, fn v => RESULT v)

This normalization function is compositional over source terms: all recursive calls are
over a proper subpart of the left-hand side.

Back to direct style

The refunctionalized definition of Section 6.3.4 is in continuation-passing style since it has
a functional accumulator and all of its calls are tail calls [56]. Its direct-style counterpart
reads as follows:

(* term -> value *)
fun normalize7_term_neg (VAR x)

= LIT_nnf (NEGVAR x)
| normalize7_term_neg (NEG t)
= normalize7_term t

| normalize7_term_neg (CONJ (t1, t2))
= DISJ_nnf (normalize7_term_neg t1, normalize7_term_neg t2)

| normalize7_term_neg (DISJ (t1, t2))
= CONJ_nnf (normalize7_term_neg t1, normalize7_term_neg t2)

(* term -> value *)
and normalize7_term (VAR x)

= LIT_nnf (POSVAR x)
| normalize7_term (NEG t)
= normalize7_term_neg t

| normalize7_term (CONJ (t1, t2))
= CONJ_nnf (normalize7_term t1, normalize7_term t2)

| normalize7_term (DISJ (t1, t2))
= DISJ_nnf (normalize7_term t1, normalize7_term t2)

(* term -> result_or_wrong *)
fun normalize7 t = RESULT (normalize7_term t)

This normalization function is compositional over source terms.

Catamorphic normalizers

The compositional normalizer of Section 6.3.4 features two mutually recursive functions
from terms to values. These two functions can be expressed as one, using the following
type isomorphism:

(A→ B)× (A→ B) ' A→ B2

Representationally, this isomorphism can be exploited in two ways: by representing B2 as
2→ B and by representing B2 as B × B. Let us review each of these representations.

Representing B2 as 2→ B We first need a two-element type to account for the “po-
larity” of the current sub-term, i.e., whether the number of negations between the root of
the given term and the current sub-term is even (in which case the polarity is positive) or
it is odd (in which case the polarity is negative):
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datatype polarity = PLUS
| MINUS

We are now in position to express the normalizer with one recursive descent over the
given term, threading the current polarity in an inherited fashion, and returning a term
in normal form:

(* term -> (polarity -> value) *)
fun normalize8_term (VAR x)

= (fn PLUS => LIT_nnf (POSVAR x)
| MINUS => LIT_nnf (NEGVAR x))

| normalize8_term (NEG t)
= let val c = normalize8_term t
in fn PLUS => c MINUS

| MINUS => c PLUS
end

| normalize8_term (CONJ (t1, t2))
= let val c1 = normalize8_term t1

val c2 = normalize8_term t2
in fn PLUS => CONJ_nnf (c1 PLUS , c2 PLUS)

| MINUS => DISJ_nnf (c1 MINUS, c2 MINUS)
end

| normalize8_term (DISJ (t1, t2))
= let val c1 = normalize8_term t1

val c2 = normalize8_term t2
in fn PLUS => DISJ_nnf (c1 PLUS , c2 PLUS)

| MINUS => CONJ_nnf (c1 MINUS, c2 MINUS)
end

(* term -> result_or_wrong *)
fun normalize8 t = RESULT (normalize8_term t PLUS)

Initially, the given term has a positive polarity.
To make it manifest that this normalizer is (1) compositional and (2) singly recursive,

let us express it as a catamorphism, i.e., as an instance of term_foldr:

(* term -> (polarity -> value) *)
val normalize9_term

= term_foldr
(fn x => (fn PLUS => LIT_nnf (POSVAR x)

| MINUS => LIT_nnf (NEGVAR x)),
fn c => (fn PLUS => c MINUS

| MINUS => c PLUS),
fn (c1, c2) => (fn PLUS => CONJ_nnf (c1 PLUS , c2 PLUS)

| MINUS => DISJ_nnf (c1 MINUS, c2 MINUS)),
fn (c1, c2) => (fn PLUS => DISJ_nnf (c1 PLUS, c2 PLUS)

| MINUS => CONJ_nnf (c1 MINUS, c2 MINUS)))

(* term -> result_or_wrong *)
fun normalize9 t = RESULT (normalize9_term t PLUS)

Representing B2 as B × B We use a pair holding a term in normal form and its dual.
This pair puts us in position to express the normalizer with one recursive descent over the
given term, returning a pair of terms in normal form in a synthesized fashion:

(* term -> value * value *)
fun normalize10_term (VAR x)

= (LIT_nnf (POSVAR x), LIT_nnf (NEGVAR x))
| normalize10_term (NEG t)
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= let val (tp, tm) = normalize10_term t
in (tm, tp)
end

| normalize10_term (CONJ (t1, t2))
= let val (t1p, t1m) = normalize10_term t1

val (t2p, t2m) = normalize10_term t2
in (CONJ_nnf (t1p, t2p), DISJ_nnf (t1m, t2m))
end

| normalize10_term (DISJ (t1, t2))
= let val (t1p, t1m) = normalize10_term t1

val (t2p, t2m) = normalize10_term t2
in (DISJ_nnf (t1p, t2p), CONJ_nnf (t1m, t2m))
end

(* term -> result_or_wrong *)
fun normalize10 t

= let val (tp, tm) = normalize10_term t
in RESULT tp
end

The final result is the positive component of the resulting pair.
To make it manifest that this normalization function is (1) compositional and (2) singly

recursive, let us express it as a catamorphism, i.e., as an instance of term_foldr:

(* term -> value * value *)
val normalize11_term

= term_foldr
(fn x

=> (LIT_nnf (POSVAR x), LIT_nnf (NEGVAR x)),
fn (tp, tm)

=> (tm, tp),
fn ((t1p, t1m), (t2p, t2m))

=> (CONJ_nnf (t1p, t2p), DISJ_nnf (t1m, t2m)),
fn ((t1p, t1m), (t2p, t2m))

=> (DISJ_nnf (t1p, t2p), CONJ_nnf (t1m, t2m)))

(* term -> result_or_wrong *)
fun normalize11 t

= let val (tp, tm) = normalize11_term t
in RESULT tp
end

6.3.5 Summary and conclusion

We have refocused the reduction-based normalization function of Section 6.3.2 into a
small-step abstract machine, and we have exhibited a family of corresponding reduction-
free normalization functions that all are inter-derivable.

We wish to emphasize that the starting point (the small-step reduction semantics) and
the ending point (the big-step compositional normalization functions) are natural ones,
i.e., undergraduate teaching material in functional programming. Proving that they are
equivalent, on the other hand, is non trivial. In fact, the proof techniques involved to es-
tablish this equivalence form the core of Nielson and Nielson’s popular textbook Semantics
with Applications [154]. An additional advantage of the present calculational method is
that it scales. To substantiate this claim, we invite the reader to pause and sketch a nega-
tional normalizer that implements a leftmost innnermost strategy instead of the leftmost
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outermost strategy considered in this section. Rendez-vous then with the accompanying
Standard ML code for a complete derivation of such negational normalizers.

6.4 Leftmost outermost conjunctive normalization

In this section, we consider conjunctive normal forms. We go from a leftmost-outermost
reduction strategy to the corresponding leftmost-outermost evaluation strategy. Unlike the
reduction rules for negational normalization, the rules for conjunctive normalization do
not allow for a straightforward transformation. We therefore begin this section by adjust-
ing the reduction rules (Section 6.4.0). We then implement the reduction strategy for the
new rules (Section 6.4.1) as a prequel to implementing the corresponding reduction se-
mantics (Section 6.4.2). We then turn to the syntactic correspondence between reduction
semantics and abstract machines (Section 6.4.3) and to the functional correspondence
between abstract machines and normalization functions (Section 6.4.4).

6.4.0 Generalized reduction

Consider the reduction rules provided by the distributivity laws presented in Section 6.1:

tnnf1 ∨ (tnnf2 ∧ tnnf3)→ (tnnf1 ∨ tnnf2)∧ (tnnf1 ∨ tnnf3)
(tnnf1 ∧ tnnf2)∨ tnnf3 → (tnnf1 ∨ tnnf3)∧ (tnnf2 ∨ tnnf3)

Unlike the reduction rules for negational normalization, these two rules overlap in two
ways:

1. Redexes overlap because a term can be an instance of several redexes. For example,
the term (tnnf1 ∧ tnnf2)∨ (tnnf3 ∧ tnnf4) can be reduced by either rule. In the present
case, this critical pair results in a non-confluent rewrite system where normal forms
are not unique: the order in which the reduction rules are applied matters, and
depending on this order, distinct normal forms can be obtained.

2. Redexes and contractums overlap because when a contractum is a conjunction and
occurs as an immediate subterm of a disjunction, this disjunction forms a new redex.
For example, the term tnnf1 ∨ (tnnf2 ∨ (tnnf3 ∧ tnnf4)) reduces in one step to tnnf1 ∨
((tnnf2 ∨ tnnf3)∧ (tnnf2 ∨ tnnf4)) where the contractum (i.e., the conjunction) and the
top-most disjunction now form the next redex to be contracted.

This situation is due to an overlap between the left-hand sides and right-hand sides
of the reduction rules where a right-hand side can occur as a sub-pattern of a left-
hand side. Such overlaps can make the next redex be spread across the current
context and the current contractum. This next redex would be found by recom-
posing the current reduction context around the contractum and decomposing the
resulting reduct. It would, however, not be found by decomposing the contractum
in the current context.

Overlaps of this kind therefore make refocusing unapplicable, unlike in Sections 6.3
and in all the case studies of refocusing that the authors are aware of.

We eliminate these overlaps as follows:
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1. To eliminate overlapping redexes, we restrict the lefthand side of the first reduction
rule to tcnf1 ∨ (tnnf2 ∧ tnnf3), thereby making the reduction strategy go from left to
right.

2. To eliminate overlaps between left-hand sides and right-hand sides, we first note
that the form of a conjunction in the context of disjunctions is D[tnnf1 ∧ tnnf2], where
D is a context of (restricted) disjunctions defined by:

D ::= [] | D ∨ tnnf | tdnf ∨ D

Using this observation, we can generalize the reduction rules to eliminate the con-
struction of new redexes:

D[tnnf1 ∧ tnnf2]→ D[tnnf1]∧ D[tnnf2] where D 6= []

In effect, the generalized contraction hereditarily pulls out a conjunction in one single
step, thereby avoiding the construction of intermediate redexes.

We now prove that leftmost outermost reduction by this generalized reduction rule is
sound with respect to leftmost outermost reduction by the original two reduction rules. We
use the notation t 7→ t ′ to denote that t reduces to t ′ by reducing the leftmost outermost
redex of t using the original reduction rules, and 7→∗ to denote the reflexive and transitive
closure of 7→. Also, we use t � t ′ to denote that t reduces to t ′ by reducing the leftmost
outermost redex of t using the generalized rule:

Proposition 23 (soundness). Let r = D[tnnf1 ∧ tnnf2], and let t = C[r], where C is any
context such that r is the leftmost outermost redex of t by the generalized reduction rule, i.e.,
t � C[D[tnnf1]∧ D[tnnf2]]. Then t 7→∗ C[D[tnnf1]∧ D[tnnf2]].

Proof. We first note that since r is the leftmost outermost redex in t, we can limit our
proof to the case where C = [] without loss of generality. We proceed by induction on D:

Case D = [] By reflexivity of 7→∗.

Case D = D0[[]∨ tnnf ]
t

= D0[(tnnf1 ∧ tnnf2)∨ tnnf ]
7→ D0[(tnnf1 ∨ tnnf )∧ (tnnf2 ∨ tnnf )]
7→∗ D0[tnnf1 ∨ tnnf ]∧ D0[tnnf2 ∨ tnnf ]
= C[D[tnnf1]∧ D[tnnf2]]

Case D = D0[tdnf ∨ []]
t

= D0[tcnf ∨ (tnnf1 ∧ tnnf2)]
7→ D0[(tdnf ∨ tnnf1)∧ (tdnf ∨ tnnf2)]
7→∗ D0[tdnf ∨ tnnf1]∧ D0[tdnf ∨ tnnf2]
= C[D[tnnf1]∧ D[tnnf2]]

Note that we only need to apply the induction hypothesis when D0 is non-empty, in which
case it is indeed applied to the leftmost outermost redex of the term.

With this adjusted reduction rule, we can proceed as in Sections 6.3.
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6.4.1 Prelude to a reduction semantics

The reduction strategy induces a notion of value and of potential redex (i.e., of a term that
is an actual redex or that is stuck); we are then in position to state a compositional search
function that implements the reduction strategy and maps a given term either to the corre-
sponding value, if it is in normal form, or to a potential redex. Reflecting the stratification
of conjunctive normal forms described in Sections 6.1 and 6.2, we specify the search for
a potential redex in two stages. First, we search for the leftmost-outermost conjunction
inside a disjunction. From this search function, we derive a decomposition function map-
ping a given term either to the corresponding value, if it is in the grammar of tdnf , or to
the leftmost-outermost conjunction and its context of disjunctions (Section 6.4.1). Sec-
ond, we search for the leftmost-outermost disjunction containing a conjunction. From
this search function, we derive a decomposition function mapping a given term either to
the corresponding value, if it is in the grammar of tcnf , or to a potential redex and its
reduction context (Section 6.4.1). As a corollary, we can then state the associated recom-
position function that maps a reduction context and a contractum to the corresponding
reduct (Section 6.4.1).

Prequel to the reduction strategy

Under the assumption that there is a surrounding disjunction, we must locate the leftmost-
outermost conjunction. A value therefore is a term where there are no conjunctions, i.e.,
a term in the grammar tdnf :

datatype found_d = VAL_d of disj_cnf
| LMOM_CONJ of term_nnf * term_nnf

The following implements the reduction strategy as a compositional search function. It
searches for a conjunction depth-first and from left to right:

(* term_nnf -> found_d *)
fun search_term_d (LIT_nnf x)

= VAL_d (DISJ_leaf x)
| search_term_d (CONJ_nnf (t1, t2))
= LMOM_CONJ (t1, t2)

| search_term_d (DISJ_nnf (t1, t2))
= (case search_term_d t1

of (VAL_d d1)
=> (case search_term_d t2

of (VAL_d d2)
=> VAL_d (DISJ_node (d1, d2))

| (LMOM_CONJ conj)
=> LMOM_CONJ conj)

| (LMOM_CONJ conj)
=> LMOM_CONJ conj)

(* term_nnf -> found_d *)
fun search_d t = search_term_d t

From searching to decomposing As in Section 6.3.1, we transform the search func-
tion into a decomposition function. We do so by (1) CPS-transforming the search function,
(2) defunctionalizing its continuation,
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datatype cont_d = D0
| D1 of cont_d * term_nnf
| D2 of disj_cnf * cont_d

and (3) returning a conjunction (if one exists) and its context of disjunctions:

datatype value_or_decomposition_d = VAL_d of disj_cnf
| DEC_d of term_nnf * term_nnf * cont_d

(* cont_d * disj_cnf -> value_or_decomposition_d *)
fun decompose_cont_d (D0, d)

= VAL_d d
| decompose_cont_d (D1 (k, t2), d1)
= decompose_term_d (t2, D2 (d1, k))

| decompose_cont_d (D2 (d1, k), d2)
= decompose_cont_d (k, DISJ_node (d1, d2))

(* term_nnf * cont_d -> value_or_decomposition_d *)
and decompose_term_d (LIT_nnf x, k)

= decompose_cont_d (k, DISJ_leaf x)
| decompose_term_d (CONJ_nnf (t1, t2), k)
= DEC_d (t1, t2, k)

| decompose_term_d (DISJ_nnf (t1, t2), k)
= decompose_term_d (t1, D1 (k, t2))

(* term_nnf -> value_or_decomposition_d *)
fun decompose_d t = decompose_term_d (t, D0)

The reduction strategy

The reduction strategy consists in locating the leftmost-outermost conjunction that is di-
rectly below a disjunction. A value therefore is a term where disjunctions contain no
conjunctions, i.e., a conjunctive normal form:

type value = term_cnf

A potential redex is the distribution of disjunctions over a conjunction:

datatype potential_redex = PR_DISTR_DISJ of term_nnf * term_nnf * cont_d

The following compositional search function implements the reduction strategy. It searches
for a potential redex depth-first and from left to right:

datatype found_c = VAL_c of value
| POTRED_c of potential_redex

(* term_nnf -> found_c *)
fun search_term_c (LIT_nnf x)

= VAL_c (CONJ_leaf (DISJ_leaf x))
| search_term_c (CONJ_nnf (t1, t2))
= (case search_term_c t1

of (VAL_c c1)
=> (case search_term_c t2

of (VAL_c c2)
=> VAL_c (CONJ_node (c1, c2))

| (POTRED_c pr)
=> POTRED_c pr)

| (POTRED_c pr)
=> POTRED_c pr)

| search_term_c (DISJ_nnf (t1, t2))
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= (case decompose_d (DISJ_nnf (t1, t2))
of (VAL_d d)

=> VAL_c (CONJ_leaf d)
| (DEC_d (t1, t2, D))
=> POTRED_c (PR_DISTR_DISJ (t1, t2, D)))

(* term_nnf -> found_c *)
fun search_c t = search_term_c t

From searching to decomposing As in Section 6.3.1, we transform the search func-
tion into a decomposition function. We do so by (1) CPS-transforming the search function,
(2) defunctionalizing its continuation,

datatype cont_c = C0
| C1 of cont_c * term_nnf
| C2 of conj_cnf * cont_c

and (3) returning a potential redex (if one exists) and its reduction context:

datatype value_or_decomposition = VAL of value
| DEC of potential_redex * cont_c

(* cont_d * disj_cnf * cont_c -> value_or_decomposition *)
fun decompose_cont_d (D0, d, C)

= decompose_cont_c (C, CONJ_leaf d)
| decompose_cont_d (D1 (D, t2), d1, C)
= decompose_term_d (t2, D2 (d1, D), C)

| decompose_cont_d (D2 (d1, D), d2, C)
= decompose_cont_d (D, DISJ_node (d1, d2), C)

(* term_nnf * cont_d * cont_c -> value_or_decomposition *)
and decompose_term_d (LIT_nnf x, D, C)

= decompose_cont_d (D, DISJ_leaf x, C)
| decompose_term_d (CONJ_nnf (t1, t2), D, C)
= DEC (PR_DISTR_DISJ (t1, t2, D), C)

| decompose_term_d (DISJ_nnf (t1, t2), D, C)
= decompose_term_d (t1, D1 (D, t2), C)

(* cont_c * conj_cnf -> value_or_decomposition *)
and decompose_cont_c (C0, c)

= VAL c
| decompose_cont_c (C1 (C, t2), c1)
= decompose_term_c (t2, C2 (c1, C))

| decompose_cont_c (C2 (c1, C), c2)
= decompose_cont_c (C, CONJ_node (c1, c2))

(* term_nnf * cont_c -> value_or_decomposition *)
and decompose_term_c (LIT_nnf x, C)

= decompose_cont_c (C, CONJ_leaf (DISJ_leaf x))
| decompose_term_c (CONJ_nnf (t1, t2), C)
= decompose_term_c (t1, C1 (C, t2))

| decompose_term_c (t as DISJ_nnf (t1, t2), C)
= decompose_term_d (t, D0, C)

(* term_nnf -> value_or_decomposition *)
fun decompose t = decompose_term_c (t, C0)
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Recomposition

A reduction context is recomposed around a term with a left fold over this context:

(* cont_d * term_nnf -> term_nnf *)
fun recompose_d (D0, t)

= t
| recompose_d (D1 (D, t2), t1)
= recompose_d (D, DISJ_nnf (t1, t2))

| recompose_d (D2 (d1, D), t2)
= recompose_d (D, DISJ_nnf (embed_cnf (CONJ_leaf d1), t2))

(* cont_c * term_nnf -> term_nnf *)
fun recompose_c (C0, t)

= t
| recompose_c (C1 (C, t2), t1)
= recompose_c (C, CONJ_nnf (t1, t2))

| recompose_c (C2 (c1, C), t2)
= recompose_c (C, CONJ_nnf (embed_cnf c1, t2))

(* cont_c * cont_d * term_nnf -> term_nnf *)
fun recompose (C, D, t) = recompose_c (C, recompose_d (D, t))

6.4.2 A reduction semantics

We are now fully equipped to implement a reduction semantics for conjunctive normal-
ization.

Notion of reduction

The reduction rule is implemented as:

datatype contractum_or_error = CONTRACTUM of term_nnf
| ERROR of string

(* potential_redex -> contractum_or_error *)
fun contract (PR_DISTR_DISJ (t1, t2, D))

= CONTRACTUM (CONJ_nnf (recompose_d (D, t1), recompose_d (D, t2)))

In the present case, all potential redexes are actual ones, i.e., no terms are stuck.

One-step reduction

Given a non-value term, a one-step reduction function (1) decomposes this non-value
term into a potential redex and a reduction context, (2) contracts the potential redex if
it is an actual one, and (3) recomposes the reduction context with the contractum. If the
potential redex is not an actual one, reduction is stuck. Given a value term, reduction is
also stuck:

datatype reduct_or_stuck = REDUCT of term_nnf
| STUCK of string

(* term_nnf -> reduct_or_stuck *)
fun reduce t

= (case decompose t
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of (VAL v)
=> STUCK "irreducible term"

| (DEC (pr, C))
=> (case contract pr

of (CONTRACTUM t’) => REDUCT (recompose_c (C, t’))
| (ERROR s) => STUCK s))

Reduction-based normalization

A reduction-based normalization function is one that iterates the one-step reduction func-
tion until it yields a value or becomes stuck. If it yields a value, this value is the result of
evaluation, and if it becomes stuck, evaluation goes wrong:

datatype result_or_wrong = RESULT of value
| WRONG of string

The following definition uses decompose to distinguish between value and non-value
terms:

(* value_or_decomposition -> result_or_wrong *)
fun iterate (VAL v)

= RESULT v
| iterate (DEC (pr, C))
= (case contract pr

of (CONTRACTUM t’) => iterate (decompose (recompose_c (C, t’)))
| (ERROR s) => WRONG s)

(* term_nnf -> result_or_wrong *)
fun normalize t = iterate (decompose t)

6.4.3 From reduction-based to reduction-free normalization

This section follows the steps of Section 6.3.3: we refocus the reduction-based normaliza-
tion function of Section 6.4.2, inline the contraction function, fuse the resulting small-step
abstract machine into a big-step one, and compress its corridor transitions. The result
reads as follows:

datatype cont_d = D0
| D1 of cont_d * term_nnf
| D2 of disj_cnf * cont_d

datatype cont_c = C0
| C1 of cont_c * term_nnf
| C2 of conj_cnf * cont_c
| C1_rec of cont_c * cont_d * term_nnf

(* cont_d * disj_cnf * cont_c -> result_or_wrong *)
fun normalize4_cont_d (D0, d, C)

= normalize4_cont_c (C, CONJ_leaf d)
| normalize4_cont_d (D1 (D, t2), d1, C)
= normalize4_term_d (t2, D2 (d1, D), C)

| normalize4_cont_d (D2 (d1, D), d2, C)
= normalize4_cont_d (D, DISJ_node (d1, d2), C)

(* term_nnf * cont_d * cont_c -> result_or_wrong *)
and normalize4_term_d (LIT_nnf x, D, C)

= normalize4_cont_d (D, DISJ_leaf x, C)
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| normalize4_term_d (CONJ_nnf (t1, t2), D, C)
= normalize4_term_d (t1, D, C1_rec (C, D, t2))

| normalize4_term_d (DISJ_nnf (t1, t2), D, C)
= normalize4_term_d (t1, D1 (D, t2), C)

(* cont_c * conj_cnf -> result_or_wrong *)
and normalize4_cont_c (C0, c)

= RESULT c
| normalize4_cont_c (C1 (C, t2), c1)
= normalize4_term_c (t2, C2 (c1, C))

| normalize4_cont_c (C2 (c1, C), c2)
= normalize4_cont_c (C, CONJ_node (c1, c2))

| normalize4_cont_c (C1_rec (C, D, t2), c1)
= normalize4_term_d (t2, D, C2 (c1, C))

(* term_nnf * cont_c -> result_or_wrong *)
and normalize4_term_c (LIT_nnf x, C)

= normalize4_cont_c (C, CONJ_leaf (DISJ_leaf x))
| normalize4_term_c (CONJ_nnf (t1, t2), C)
= normalize4_term_c (t1, C1 (C, t2))

| normalize4_term_c (DISJ_nnf (t1, t2), C)
= normalize4_term_d (t1, D1 (D0, t2), C)

(* term_nnf -> result_or_wrong *)
fun normalize4 t = normalize4_term_c (t, C0)

6.4.4 From abstract machines to normalization functions

The big-step abstract machine of Section 6.4.3 is in defunctionalized form. Its higher-
order counterpart reads as follows.

(* term_nnf * (disj_cnf * (value -> ’a) -> ’a) * (value -> ’a) -> ’a *)
fun normalize5_term_d (LIT_nnf x, k, mk)

= k (DISJ_leaf x, mk)
| normalize5_term_d (CONJ_nnf (t1, t2), k, mk)
= normalize5_term_d (t1, k, fn c1 =>

normalize5_term_d (t2, k, fn c2 =>
mk (CONJ_node (c1, c2))))

| normalize5_term_d (DISJ_nnf (t1, t2), k, mk)
= normalize5_term_d (t1, fn (d1, mk’) =>

normalize5_term_d (t2, fn (d2, mk’’) =>
k (DISJ_node (d1, d2), mk’’), mk’), mk)

(* term_nnf * (value -> ’a) -> ’a *)
fun normalize5_term_c (LIT_nnf x, mk)

= mk (CONJ_leaf (DISJ_leaf x))
| normalize5_term_c (CONJ_nnf (t1, t2), mk)
= normalize5_term_c (t1, fn c1 =>

normalize5_term_c (t2, fn c2 =>
mk (CONJ_node (c1, c2))))

| normalize5_term_c (DISJ_nnf (t1, t2), mk)
= normalize5_term_d (DISJ_nnf (t1, t2), fn (d, mk’) =>

mk’ (CONJ_leaf d), mk)

(* term_nnf -> result_or_wrong *)
fun normalize5 t = normalize5_term_c (t, RESULT)

This normalization function is in continuation-passing style. Its direct-style counterpart
reads as follows:
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(* term_nnf * (disj_cnf -> conj_cnf) -> conj_cnf *)
fun normalize6_term_d (LIT_nnf x, k)

= k (DISJ_leaf x)
| normalize6_term_d (CONJ_nnf (t1, t2), k)
= CONJ_node (normalize6_term_d (t1, k), normalize6_term_d (t2, k))

| normalize6_term_d (DISJ_nnf (t1, t2), k)
= normalize6_term_d (t1, fn d1 =>

normalize6_term_d (t2, fn d2 =>
k (DISJ_node (d1, d2))))

(* term_nnf -> value *)
fun normalize6_term_c (LIT_nnf x)

= CONJ_leaf (DISJ_leaf x)
| normalize6_term_c (CONJ_nnf (t1, t2))
= CONJ_node (normalize6_term_c t1, normalize6_term_c t2)

| normalize6_term_c (DISJ_nnf (t1, t2))
= normalize6_term_d (DISJ_nnf (t1, t2), fn d => CONJ_leaf d)

(* term_nnf -> result_or_wrong *)
fun normalize6 t = RESULT (normalize6_term_c t)

In this normalization function, normalize_term_d is expressed in the “continuation-
composing style” characteristic of functional backtracking. It is called in the clause for
disjunctions, in the definition of normalize_term_c, with an initial continuation. In the
clauses for literals and disjunctions, normalize_term_d is in the ordinary continuation-
passing style, where all calls are tail calls. In the clause for conjunctions, however, there
are two non-tail calls to normalize_term_d. In direct style, this programming idiom is
captured with the delimited control operators shift and reset [64].

6.4.5 Delimited continuations in direct style

In this section, we use Filinski’s encoding of shift and reset in ML [90]:

val shift : ((’a -> value) -> value) -> ’a
val reset : (unit -> value) -> value

The control delimiter reset is used to initialize the continuation. The control operator
shift is used to capture the current continuation, as delimited by a surrounding occur-
rence of reset.

The direct-style counterpart of the normalization function of Section 6.4.4 reads as
follows:

(* term_nnf/value -> disj_cnf/value *)
fun normalize7_term_d (LIT_nnf x)

= DISJ_leaf x
| normalize7_term_d (CONJ_nnf (t1, t2))
= shift (fn k =>

CONJ_node (reset (fn () => k (normalize7_term_d t1)),
reset (fn () => k (normalize7_term_d t2))))

| normalize7_term_d (DISJ_nnf (t1, t2))
= DISJ_node (normalize7_term_d t1, normalize7_term_d t2)

(* term_nnf/’a -> value/’a *)
fun normalize7_term_c (LIT_nnf x)

= CONJ_leaf (DISJ_leaf x)
| normalize7_term_c (CONJ_nnf (t1, t2))
= CONJ_node (normalize7_term_c t1, normalize7_term_c t2)

| normalize7_term_c (DISJ_nnf (t1, t2))
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= reset (fn () => CONJ_leaf (normalize7_term_d (DISJ_nnf (t1, t2))))

(* term_nnf -> result_or_wrong *)
fun normalize7 t = RESULT (normalize7_term_c t)

In this normalization function, normalize_term_d is now expressed in direct style. Its
call in the clause for disjunctions, in the definition of normalize_term_c, is now delimited
with an occurrence of reset. In the clauses for literals and disjunctions, normalize_term_d
is in ordinary direct style. In the clause for conjunctions, however, an occurrence of shift
captures the current (delimited) continuation and duplicates it by applying it twice inside
the conjunction, thereby realizing the duplication of contexts in the generalized distribu-
tivity law.

6.4.6 Summary and conclusion

We have first identified that the reduction rules implementing the distribution of disjunc-
tions over conjunctions suffer from overlaps that make it impossible to refocus the cor-
responding reduction-based normalization function. We have therefore adjusted them.
Then, taking the very same steps as in Section 6.3, we have refocused the reduction-
based normalization function of Section 6.4.2 into a small-step abstract machine, and we
have exhibited a family of corresponding reduction-free normalization functions that all
are inter-derivable. It is our observation that the resulting higher-order normalization
functions use delimited continuations, which we have exemplified by using the delimited-
control operators shift and reset.

Ever since Wand’s foundational article on continuation-based program-transformation
strategies [217], converting a formula into conjunctive normal form is a classic among
continuation aficionados. We are adding two stones to this monument:

1. our big-step, reduction-free normalization function is not designed per se; it is sys-
tematically calculated from a small-step, reduction-based normalization function;
and

2. it shows that delimited continuations form a natural expressive medium to carry
out the distribution law in the big-step normalization function.

6.5 Conclusion and perspectives

The inter-derivations illustrated here witness a striking unity of computation across re-
duction semantics, abstract machines, and normalization functions: they all truly define
the same elephant, so to speak. The structural coincidence between reduction contexts
and evaluation contexts as defunctionalized continuations, in particular, plays a key rôle
to connect reduction strategies and evaluation strategies, a connection that was first es-
tablished by Plotkin [169] and that scales to delimited continuations. As for Ohori and
Sasano’s lightweight fusion [155], it provides the linchpin between the functional rep-
resentations of small-step and big-step operational semantics [67]. Overall, the inter-
derivations illustrate the conceptual value of semantics-based program manipulation, as
promoted at PEPM ever since its inception.

Acknowledgements. We are grateful to Jeremy Siek and Siau-Cheng Khoo for their invi-
tation to present a preliminary version of this work at the 20th anniversary of PEPM [76].
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6.5. Conclusion and perspectives

The example of negational normalization originates in a joint work of the first and second
authors [65]. The two prequels to a reduction semantics originate in a joint work of the
first and third authors.
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Chapter 7

Storeless call-by-need evaluation

This chapter appeared in [77]: Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny.
On inter-deriving small-step and big-step semantics: A case study for storeless call-by-
need evaluation. Theoretical Computer Science, 435:21–42, 2012.

An earlier version appeared in [75]: Olivier Danvy, Kevin Millikin, Johan Munk, and
Ian Zerny. Defunctionalized interpreters for call-by-need evaluation. In Matthias Blume
and German Vidal, editors, Functional and Logic Programming, 10th International Sympo-
sium, FLOPS 2010, number 6009 in Lecture Notes in Computer Science, pages 240–256,
Sendai, Japan, April 2010. Springer.

Abstract

Starting from the standard call-by-need reduction for the λ-calculus that is common
to Ariola, Felleisen, Maraist, Odersky, and Wadler, we inter-derive a series of hygienic
semantic artifacts: a reduction-free storeless abstract machine, a continuation-passing
evaluation function, and what appears to be the first heapless natural semantics for
call-by-need evaluation. Furthermore we observe that the evaluation function imple-
menting this natural semantics is in defunctionalized form. The refunctionalized coun-
terpart of this evaluation function implements an extended direct semantics in the sense
of Cartwright and Felleisen.

Overall, the semantic artifacts presented here are simpler than many other such
artifacts that have been independently worked out, and which require ingenuity, skill,
and independent soundness proofs on a case-by-case basis. They are also simpler to
inter-derive because the inter-derivational tools (e.g., refocusing and defunctionaliza-
tion) already exist.

7.1 Introduction

A famous functional programmer once was asked to give an overview talk. He began with
“This talk is about lazy functional programming and call by need.” and paused. Then,
quizzically looking at the audience, he quipped: “Are there any questions?” There were
some, and so he continued: “Now listen very carefully, I shall say this only once.”
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This apocryphal story illustrates demand-driven computation and memoization of in-
termediate results, two key features that have elicited a fascinating variety of semantic
specifications and implementation techniques over the years, ranging from purely syntac-
tic treatments to mutable state, and featuring small-step operational semantics [12, 141],
a range of abstract machines [96, 99, 195], big-step operational semantics [7, 134], as
well as evaluation functions [113, 122].

In this article, we extract the computational content of the standard call-by-need re-
duction for the λ-calculus that is common to both Ariola and Felleisen [12] and Maraist,
Odersky, and Wadler [141]. This computational content takes the forms of a one-step
reduction relation, an abstract machine, and a natural semantics that are mutually com-
patible and all abide by Barendregt’s variable convention [22, page 26]. Traditionally,
one could either handcraft each of these semantic artifacts from scratch and then prove
a series of soundness theorems, or invent a calculation to go from artifact to artifact and
prove the correctness of the calculation on the way. We depart from these two traditions
by going from artifact to artifact using a pre-defined series of fully correct transformations,
following the programme outlined in the first author’s invited talk at ICFP 2008 [62]. To
this programme, though, we add one new refunctionalization step that is specific to call
by need. The inter-derivation is itemized as follows:

0. for starters, we make the contraction rules explicitly hygienic to make the standard
one-step reduction preserve Barendregt’s variable convention;

1. iterating this hygienic standard one-step reduction yields a standard reduction-
based evaluation, which we refocus [71] to obtain a reduction-free evaluation with
the same built-in hygiene; this reduction-free evaluation takes the form of an ab-
stract machine and is correct by construction; we simplify this hygienic abstract
machine by hereditarily compressing its corridor transitions.

We then change perspective and instead of considering this abstract machine as a small-
step entity defining a relation, we consider it as a big-step entity defining a function:

2. we refunctionalize [69] the simplified hygienic abstract machine of Item 1 into a
continuation-passing evaluation function, which we write back to direct style, ob-
taining a functional program that is correct by construction and that implements a
heapless natural semantics with the same built-in hygiene;

3. in addition, we observe that the evaluation function implementing this hygienic nat-
ural semantics is in defunctionalized form [70], and we present the corresponding
higher-order evaluation function.

Overview We start with a call-by-name semantics of the λlet-calculus (Section 7.2).
This reduction semantics provides a syntactic account of demand-driven computation.
Extending this syntactic account with the memoization of intermediate results yields Ar-
iola et al.’s call-by-need semantics of the λlet-calculus (Section 7.3). This reduction se-
mantics is deceivingly concise: in the first half of this article (Section 7.4), we method-
ically analyze it, considering in turn its potential redexes (Section 7.4.1), its (lack of)
hygiene (Section 7.4.2), its evaluation contexts (Section 7.4.3), the recomposition of its
evaluation contexts around a term (Section 7.4.4), its decomposition of a non-answer
term into a potential redex and its evaluation context according to the reduction strat-
egy (Section 7.4.5), its contraction rules (Section 7.4.6), its standard one-step reduction
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7.2. The standard call-by-name reduction for the λ-calculus

(Section 7.4.7), and its standard reduction-based evaluation (Section 7.4.8). The exten-
sional properties such as unique decomposition, standardization, and hygiene ensure the
existence of a deterministic evaluator extensionally. However, it is our thesis that they
also provide precious intensional guidelines. We illustrate this thesis in the second half of
this article (Sections 7.5 to 7.8): from the reduction semantics, we mechanically derive
an abstract machine (Section 7.5), from this abstract machine, we mechanically derive
a natural semantics (Sections 7.7.1 and 7.7.2), and from this natural semantics we me-
chanically derive a higher-order evaluation function (Section 7.7.3).

The ML code of the entire derivation is available from the last author’s web page.1

Prerequisites We assume a degree of familiarity with the formats of operational se-
mantics – specifically reduction semantics, abstract machines, and natural semantics –
though no more as can be gathered, e.g., in the first author’s lecture notes at AFP 2008 [61].

7.2 The standard call-by-name reduction for the λ-calculus

Let us start with demand-driven computation and the standard reduction corresponding to
call by name. The call-by-name reduction semantics for the λlet-calculus reads as follows:

Definition 24 (call-by-name λlet-calculus).

Syntax:

Var 3 x
Term 3 T ::= x | λx .T | T T | let x be T in T
Value 3 V ::= λx .T

Answer 3 A ::= V | let x be T in A
Evaluation Context 3 E ::= [ ] | E T | let x be T in E

Contraction rules:

(I) (λx .T ) T1 → let x be T1 in T
(N) let x be T in E[x]→ let x be T in E[T]
(C) (let x be T1 in A) T2 → let x be T1 in A T2

In words:

• Programs are closed λ-terms with no let expressions.

• Terms are pure λ-terms with non-recursive let expressions. (We follow the tradition
of referring to λ-declared and let-declared denotables as “variables” even though
they do not vary.)

• Values are λ-abstractions.

• Answers are let expressions nested around a value.

1http://www.zerny.dk/def-int-for-call-by-need.html
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• Evaluation contexts are terms with a hole that are constructed inductively. The
notation “E[T]” stands for a term that decomposes into an evaluation context E
and a term T . Evaluation contexts specify where in a term the contraction rules can
be applied. In the present case, the evaluation contexts specify the call-by-name
reduction strategy.

Each contraction rule maps a redex to a contractum:

• Rule (I) introduces a let binding from an application, in a way akin to let insertion
in partial evaluation [36].

• Rule (N) hygienically substitutes a definiens (here: a term) for the occurrence of
a let-declared variable arising in an evaluation context. There may be more than
one occurrence of the variable in the context. These other occurrences are not
substituted.

• Rule (C) allows let bindings to commute with applications, hygienically, i.e., renam-
ing what needs to be renamed so that no free variable is captured.

Reduction is then defined in terms of evaluation contexts and contraction. A term T0
reduces to T1 if there exists an evaluation context E, a redex T ′0 and a contractum T ′1 such
that T0 = E[T ′0], (T

′
0, T ′1) ∈ (I) ∪ (N) ∪ (C), and T1 = E[T ′1]. The following reduction

sequence (one reduct per line) illustrates the demand-driven aspect of call by name as
well as the duplication of work it entails. We note one-step reduction with 7→name and
annotate each reduction step with the name of the corresponding contraction rule:

(λz.z z) ((λy.y) (λx .x)) 7→name (I)
let z be (λy.y) (λx .x) in z z 7→name (N)
let z be (λy.y) (λx .x) in ((λy.y) (λx .x)) z 7→name (I)
let z be (λy.y) (λx .x) in (let y be λx .x in y ) z 7→name (N)
let z be (λy.y) (λx .x) in (let y be λx .x in λx .x) z 7→name (C)
let z be (λy.y) (λx .x) in let y be λx .x in (λx .x) z 7→name (I)
let z be (λy.y) (λx .x) in let y be λx .x in let x be z in x 7→name (N)
let z be (λy.y) (λx .x) in let y be λx .x in let x be z in z 7→name (N)
let z be (λy.y) (λx .x) in let y be λx .x in let x be z in (λy.y) (λx .x) 7→name (I)
let z be (λy.y) (λx .x) in let y be λx .x in let x be z in let y be λx .x in y 7→name (N)
let z be (λy.y) (λx .x) in let y be λx .x in let x be z in let y be λx .x in λx .x

At every step, we have explicitly decomposed each reduct into a redex (underlined) and
its evaluation context (not underlined). Each (N) contraction is triggered by a demand
over a variable: we have shaded the occurrence of this variable. Each of the two shaded
occurrences of z forces the reduction of (λy.y) (λx .x). The result of this demand-driven
reduction is not memoized.

7.3 The standard call-by-need reduction for the λ-calculus

Let us supplement demand-driven computation with the memoization of intermediate re-
sults to obtain the standard reduction corresponding to call by need. The following call-
by-need reduction semantics for the λlet-calculus is common to Ariola, Felleisen, Maraist,
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Odersky, and Wadler’s articles [12, 15, 141], renaming non-terminals for notational uni-
formity:

Definition 25 (call-by-need λlet-calculus [15, Figure 3]).

Syntax:

Var 3 x
Term 3 T ::= x | λx .T | T T | let x be T in T
Value 3 V ::= λx .T

Answer 3 A ::= V | let x be T in A
Evaluation Context 3 E ::= [ ] | E T | let x be T in E | let x be E in E[x]

Contraction rules:

(I) (λx .T ) T1 → let x be T1 in T
(V ) let x be V in E[x]→ let x be V in E[V ]
(C) (let x be T1 in A) T2 → let x be T1 in A T2
(A) let x be let y be T1

in A
in E[x]

→ let y be T1
in let x be A

in E[x]

In words:

• Programs are closed λ-terms with no let expressions.

• Terms are pure λ-terms with non-recursive let expressions.

• Values are λ-abstractions.

• Answers are let expressions nested around a value.

• Evaluation contexts are terms with a hole that are constructed inductively. They
specify where in a term the contraction rules can be applied. In the present case,
the evaluation contexts specify the call-by-need reduction strategy The notation
“E[T]” stands for a term that decomposes into an evaluation context E and a term T .
Evaluation contexts specify where in a term the contraction rules can be applied. In
the present case, the evaluation contexts specify the call-by-need reduction strategy.

Each contraction rule maps a redex to a contractum:

• Rule (I) introduces a let binding from an application.

• Rule (V ) hygienically substitutes a definiens (here: a value) for the occurrence of
a let-declared variable arising in an evaluation context. There may be more than
one occurrence of the variable in the context. These other occurrences are not
substituted.

• Rule (C) allows let bindings to commute with applications.

• Rule (A) re-associates let bindings.

Where call by name uses Rule (N), call by need uses Rule (V ), ensuring that only values
are duplicated. The reduction strategy thus also differs, so that the definiens of a needed
variable is first reduced and this variable is henceforth declared to denote this reduct.
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The following reduction sequence (one reduct per line) illustrates the demand-driven
aspect of call by need as well as the memoization of intermediate results it enables. We
note one-step reduction with 7→need (and specify it precisely in Section 7.4.7) and annotate
each reduction step with the name of the corresponding contraction rule:

(λz.z z) ((λy.y) (λx .x)) 7→need (I)
let z be (λy.y) (λx .x) in z z 7→need (I)
let z be (let y be λx .x in y ) in z z 7→need (V )
let z be (let y be λx .x in λx .x) in z z 7→need (A)
let y be λx .x in let z be λx .x in z z 7→need (V )
let y be λx .x in let z be λx .x in (λx .x) z 7→need (I)
let y be λx .x in let z be λx .x in let x be z in x 7→need (V )
let y be λx .x in let z be λx .x in let x be λx .x in x 7→need (V )
let y be λx .x in let z be λx .x in let x be λx .x in λx .x

At every step, we have explicitly decomposed each reduct into a redex (underlined) and
its evaluation context (not underlined). We have shaded the occurrences of the variables
whose value is needed in the course of the reduction. Only the first shaded occurrence
of z forces the reduction of (λy.y) (λx .x). The result of this demand-driven reduction is
memoized in the let expression that declares z. It is thus reused when z triggers the two
subsequent (V ) contractions. This let expression is needed as long as z occurs free in its
body; thereafter it can be elided with a garbage-collection rule [34].

This enumeration of successive call-by-need reducts is shorter than the call-by-name
reduction sequence in Section 7.2: call by need is an optimization of call by name [12,
141].

To add computational intuition and also to make it easier to test our successive imple-
mentations, we take the liberty of extending the calculus of Definition 25 with integers
and the (strict) successor function:

Definition 26 (call-by-need λlet-calculus applied to integers).

Syntax:

Term 3 T ::= ðnñ | succ T | x | λx .T | T T | let x be T in T
Value 3 V ::= ðnñ | λx .T

Answer 3 A ::= V | let x be T in A
Evaluation Context 3 E ::= [ ] | succ E | E T | let x be T in E | let x be E in E[x]

Contraction rules:

(I) (λx .T ) T1 → let x be T1 in T
(I ′) succ ðnñ→ ðn′ñ where n′ = n+ 1
(V ) let x be V in E[x]→ let x be V in E[V ]
(C) (let x be T1 in A) T2 → let x be T1 in A T2

(C ′) succ (let x be T in A)→ let x be T in succ A
(A) let x be let y be T1

in A
in E[x]

→ let y be T1
in let x be A

in E[x]

Compared to Definition 25, the shaded parts are new.
This definition is our starting point.

130



7.4. Some exegesis

7.4 Some exegesis

Definition 26 packs a lot of information. Let us methodically spell it out:

• The contraction rules are a mouthful, and so in Section 7.4.1, we identify their
underlying structure by stating a grammar for potential redexes.

• In reduction semantics, evaluation is defined as iterated one-step reduction. How-
ever, one-step reduction assumes Barendregt’s variable convention, i.e., that all de-
clared variables are distinct, but not all the contraction rules preserve this conven-
tion: naive iteration is thus unsound. Rather than subsequently ensuring hygiene as
in Garcia et al.’s construction of a lazy abstract machine [99], we make the contrac-
tion rules explicitly hygienic in Section 7.4.2 to make one-step reduction preserve
Barendregt’s variable convention upfront.

• The evaluation contexts are unusual in that they involve terms that are uniquely de-
composable into a delimited evaluation context and a variable. In Section 7.4.3, we
restate their definition to clearly distinguish between ordinary evaluation contexts
and delimited evaluation contexts.

• The one-step reduction of a reduction semantics is implicitly structured in three
parts: given a non-answer term,

(1, decomposition): locate the next potential redex according to the reduction
strategy;

(2, contraction): if the potential redex is an actual one, i.e., if the non-answer
term is not stuck, contract this actual redex as specified by the contraction
rules; and

(3, recomposition): fill the surrounding context with the contractum to construct
the next term in the reduction sequence.

Diagrammatically:

•

decomposition
!!

one-step reduction
// •

•
contraction

// •
recomposition

==

Based on Sections 7.4.1, 7.4.2, and 7.4.3, we specify decomposition, hygienic contraction,
and recomposition in Sections 7.4.4, 7.4.5, and 7.4.6. We then formalize hygienic one-
step reduction in Section 7.4.7 and hygienic evaluation as iterated one-step reduction in
Section 7.4.8.
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7.4.1 Potential redexes

To bring out the underlying structure of the contraction rules, let us state a grammar for
potential redexes:

Potential Redex 3 R ::= succ A | A T | let x be A in E[x]

where E[x] stands for a non-answer term.
The two forms of answers – value and let expression – give rise to one contraction rule

for each production in the grammar of potential redexes:

• (I ′) arises from the application of the successor function to a value; (C ′) arises from
the application of the successor function to a let expression; likewise,

• (I) and (C) arise from the application of an answer; and

• (V ) and (A) arise from the binding of an answer to a variable whose value is needed.

Not all potential redexes are actual ones: a non-answer term may be stuck due to a
type error.

7.4.2 Barendregt’s variable convention

The definition of evaluation as iterated one-step reduction assumes Barendregt’s variable
convention, i.e., that all bound variables are distinct. Indeed the rules (V ), (C) and (A)
assume the variable convention when they move a term in the scope of a binding. A
reduction step involving (V ), however, yields a term where the variable convention does
not hold, since V is duplicated and it may contain λ-abstractions and therefore bound
variables.

There are many ways to ensure variable hygiene, if not the variable convention, at all
times. We choose to allow λ-declared (not let-declared) variables to overlap, since no
reduction can take place inside a λ-abstraction prior to its application, and to ensure that
all let-declared variables are distinct. To this end, in Rule (I), we make each let expression
explicitly hygienic by declaring a globally fresh variable and renaming the corresponding
λ-declared variable in passing:

(I) (λx .T ) T1 → let x ′ be T1 in T[x ′/x] where x ′ is fresh

This explicit hygiene ensures Barendregt’s variable convention for let-declared variables.
Other alternatives exist for ensuring variable hygiene. We have explored several of

them, and in our experience they lead to semantic artifacts that are about as simple and
understandable as the ones presented here. The alternative we chose here, i.e., making
Rule (I) explicitly hygienic corresponds to, and is derived into the same renaming side
condition as in Maraist, Odersky, and Wadler’s natural semantics [141, Figure 11]. We
also observe that this alternative is at the heart of the renaming mechanism in Garcia et
al.’s lazy abstract machine [99, Section 4.5]. Across small-step semantics (the present
work), abstract machines (Garcia et al.), and big-step semantics (Maraist et al.), there is
therefore a genuine consensus about what befits hygienic reduction best in call by need.
We have characterized this consensus in Rule (I) here.
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7.4. Some exegesis

With Rule (I) explicitly hygienic, every contraction and thus every reduction step re-
quires at most one fresh variable. Every finite reduction sequence (say, of length n) there-
fore requires at most n fresh variables. In fact, this notion of fresh variables is coinduc-
tive since programs may diverge and thus reduction sequences may be infinite. We thus
materialize the freshness condition by threading a stream of fresh variables throughout
successive contractions:

X ∈ FreshVars= νX .Var× X

This stream is used to implement Rule (I):

(I) ((x ′, X), (λx .T ) T1)→ (X, let x ′ be T1 in T[x ′/x])

In all the other rules, X is threaded passively. Threading such a stream matches implemen-
tational practice, where the so-called “gensym” procedure yields a fresh variable. Here,
this fresh variable is the next one in the stream.

7.4.3 The evaluation contexts

The grammars of contexts for call by need, in Definitions 25 and 26, are unusual com-
pared to the one for call by name given in Definition 24. Call-by-need evaluation contexts
have an additional constructor involving the term “E[x]” for which there exists a vari-
able x in the eye of a delimited context E. Spelling out decomposition (see Section 7.4.5
and Figure 7.3) shows that these delimited contexts are inductively constructed outside in
whereas all the others are constructed inside out. To emphasize the computational differ-
ence we make it explicit which are which by adopting two isomorphic representations of
contexts as a list of frames:

Context Frame 3 F ::= succ � | � T | let x be T in � | let x be � in Eoi[x]
Outside-in Context 3 Eoi ::= εoi | Eoi : : F
Inside-out Context 3 Eio ::= εio | F : : Eio

Here � is the hole in a context frame, εoi is the empty outside-in context, εio is the empty
inside-out context, and : : is the (overloaded) context constructor. For example, the con-
text E = ([ ] T1) T2 is equivalent to the outside-in context Eoi = εoi : : (� T1) : : (� T2) and
to the inside-out context Eio = (� T1) : : (� T2) : :εio in the sense that for a term T0 they
all recompose to (T0 T1) T2, as defined in Section 7.4.4. Outside-in contexts hang to the
left and inside-out contexts hang to the right. They are composed by concatenation to the
left or to the right:

Eoi ◦oi ε
io = Eoi

Eoi ◦oi (F : : Eio) = (Eoi : : F) ◦oi Eio
εoi ◦io Eio = Eio

(Eoi : : F) ◦io Eio = Eoi ◦io (F : : Eio)

NB. In this BNF of context frames, as pointed out in Section 7.2 and 7.3, the notation
“Eoi[x]” represents a term that uniquely decomposes into an outside-in evaluation context
Eoi and a variable x . In Section 7.5.2 and onwards, we take notational advantage of this
paired representation to short-cut any subsequent decomposition of this term into Eoi and
x .
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7. Storeless call-by-need evaluation

〈T, εoi〉oi ⇑rec T
〈T, Eoi〉oi ⇑rec T1

〈T, Eoi : : (succ �)〉oi ⇑rec succ T1

〈T, Eoi〉oi ⇑rec T0

〈T, Eoi : : (� T1)〉oi ⇑rec T0 T1

〈T, Eoi〉oi ⇑rec T2

〈T, Eoi : : (let x be T1 in �)〉oi ⇑rec let x be T1 in T2

〈T, Eoi〉oi ⇑rec T1 〈x , Eoi
1 〉oi ⇑rec T2

〈T, Eoi : : (let x be � in Eoi
1 [x])〉oi ⇑rec let x be T1 in T2

Figure 7.1: Recomposition of outside-in contexts

〈T, εio〉io ⇑rec T
〈succ T , Eio〉io ⇑rec T1

〈T, (succ �) : : Eio〉io ⇑rec T1

〈T0 T1, Eio〉io ⇑rec T2

〈T0, (� T1) : : Eio〉io ⇑rec T2

〈let x be T1 in T , Eio〉io ⇑rec T2

〈T, (let x be T1 in �) : : Eio〉io ⇑rec T2

〈x , Eoi〉oi ⇑rec T 〈let x be T1 in T , Eio〉io ⇑rec T2

〈T1, (let x be � in Eoi[x]) : : Eio〉io ⇑rec T2

Figure 7.2: Recomposition of inside-out contexts

7.4.4 Recomposition

Outside-in contexts and inside-out contexts are recomposed (or again are ‘plugged’ or
‘filled’) as follows:

Definition 27 (recomposition of outside-in contexts). An outside-in context Eoi is recom-
posed around a term T into a term T ′ whenever 〈T, Eoi〉oi ⇑rec T ′ holds. (See Figure 7.1.)

Definition 28 (recomposition of inside-out contexts). An inside-out context Eio is recom-
posed around a term T into a term T ′ whenever 〈T, Eio〉io ⇑rec T ′ holds. (See Figure 7.2.)

For example, let us recompose the term let x be λx0.x0 in ((λx0.x0) T1) T2 in the
inside-out context (� T3) : :εio:

〈let x be λx0.x0 in ((λx0.x0) T1) T2, (� T3) : :εio〉io

⇑recrecomposition
��

(let x be λx0.x0 in ((λx0.x0) T1) T2) T3

Proposition 29 (unique recomposition of outside-in contexts). For any term T and outside-
in context Eoi such that 〈T, Eoi〉oi ⇑rec T ′ holds, the term T ′ is unique.
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7.4. Some exegesis

〈ðnñ, Eio〉term ↓dec 〈Eio, ðnñ〉context
〈succ T , Eio〉term ↓dec 〈T, (succ �) : : Eio〉term

〈x , Eio〉term ↓dec 〈Eio, (εoi , x)〉reroot
〈λx .T , Eio〉term ↓dec 〈Eio, λx .T 〉context
〈T0 T1, Eio〉term ↓dec 〈T0, (� T1) : : Eio〉term

〈let x be T1 in T , Eio〉term ↓dec 〈T, (let x be T1 in �) : : Eio〉term

〈εio, A〉context ↓dec 〈A〉answer
〈(succ �) : : Eio, A〉context ↓dec 〈succ A, Eio〉redex
〈(� T1) : : Eio, A〉context ↓dec 〈A T1, Eio〉redex

〈(let x be T1 in �) : : Eio, A〉context ↓dec 〈Eio, let x be T1 in A〉context
〈(let x be � in Eoi[x]) : : Eio, A〉context ↓dec 〈let x be A in Eoi[x], Eio〉redex

〈(let x be T1 in �) : : Eio, (Eoi, x)〉reroot ↓dec 〈T1, (let x be � in Eoi[x]) : : Eio〉term
〈F : : Eio, (Eoi, x)〉reroot ↓dec 〈Eio, (Eoi : : F , x)〉reroot

where F 6= let x be T in �

Figure 7.3: Decomposition of an answer term into itself
and of a non-answer term into a potential redex and its context

Proof. Induction on Eoi.

Proposition 30 (unique recomposition of inside-out contexts). For any term T and inside-
out context Eio such that 〈T, Eio〉io ⇑rec T ′ holds, the term T ′ is unique.

Proof. Induction on Eio.

7.4.5 Decomposition

Decomposing a non-answer term into a potential redex and its evaluation context accord-
ing to the reduction strategy is at the heart of a reduction semantics, but outside of the
authors’ publications, it seems never to be spelled out. Let us do so.

There are many ways to specify decomposition. In our experience, a convenient one
is the abstract machine displayed in Figure 7.3. This machine starts in the configuration
〈T, εio〉term, for a given term T . It halts in an answer state if the given term contains no
potential redex, and in a decomposition state 〈R, Eio〉redex otherwise, where R is a potential
redex in T and Eio its evaluation context according to the reduction strategy specified by
the grammar of evaluation contexts.

Definition 31 (decomposition). The decomposition relation, ↓∗dec, is the transitive closure
of ↓dec. (See Figure 7.3.)

For example, let us decompose the non-answer term (let x be λx0.x0 in (x T1) T2) T3:

〈(let x be λx0.x0 in (x T1) T2) T3, εio〉term

↓∗decdecomposition
��

〈let x be λx0.x0 in (εoi : : (� T1) : : (� T2))[x], (� T3) : :εio〉redex
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7. Storeless call-by-need evaluation

The term and context transitions are traditional: one dispatches on a term and the other
on the top context frame. The reroot transitions locate the let-binder for a variable while
maintaining the outside-in context from the binder to its occurrence, zipper-style [115].2
In effect, the transitions reverse the prefix of an inside-out context into an outside-in
context. For the example above, this reversal is carried out in the following sub-steps of
decomposition:

〈(� T1) : : (� T2) : : (let x be λx0.x0 in �) : : (� T3) : :εio, (εio, x)〉reroot

↓∗dec��
〈let x be λx0.x0 in (εoi : : (� T1) : : (� T2))[x], (� T3) : :εio〉redex

Proposition 32 (vacuous decomposition of an answer term). An answer term is vacuously
decomposed into itself: for any answer term A, 〈A, εio〉term ↓∗dec 〈A〉answer holds.

Proof. By induction: the transitions over term-configurations turn the answer term inside-
out into a context until its innermost value is reached, and the transitions over context-
configurations turn back this context inside-out into the answer term until the empty
context is reached.

Proposition 33 (unique decomposition of a non-answer term). For any non-answer term
T such that 〈T, εio〉term ↓∗dec 〈R, Eio〉redex holds, the potential redex R and evaluation context
Eio are unique.

Proof. The ↓dec relation is uniquely determined and 〈R, Eio〉redex is a terminal state, thus
by transitivity 〈R, Eio〉redex is unique.

7.4.6 The contraction rules

In accordance with the new BNF of contexts, the contraction rules of Definition 26 are
hygienically stated as follows:

(I) ((x ′, X), (λx .T ) T1)→ (X, let x ′ be T1 in T[x ′/x])
(I ′) (X, succ ðnñ)→ (X, ðn′ñ) where n′ = n+ 1
(V ) (X, let x be V in Eoi[x])→ (X, let x be V in T ) where 〈V, Eoi〉oi ⇑rec T
(C) (X, (let x be T1 in A) T2)→ (X, let x be T1 in A T2)
(C ′) (X, succ (let x be T in A))→ (X, let x be T in succ A)
(A) (X, let x be let y be T1

in A
in Eoi[x])

→ (X, let y be T1
in let x be A

in Eoi[x])

Definition 34 (notion of reduction). R = (I)∪ (I ′)∪ (V )∪ (C)∪ (C ′)∪ (A) and a redex

R contracts to T , denoted R
X;X′
 R T, iff ((X, R), (X′, T )) ∈ R .

2Decomposition could be stuck for terms containing free variables, but we assume programs to be closed.
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7.4. Some exegesis

For example, let us contract the actual redex let x be λx0.x0 in (εoi : : (� T1) : : (� T2))[x]
with the stream of fresh variables X:

let x be λx0.x0 in (εoi : : (� T1) : : (� T2))[x]

X;X
 Rcontraction of (V )
��

let x be λx0.x0 in ((λx0.x0) T1) T2

Proposition 35 (unique contraction). For any redex R and stream of fresh variables X such

that R
X;X′
 R T holds, T and X′ are unique.

Proof. By case analysis on R. (See Section 7.4.1.)

7.4.7 Standard one-step reduction

The standard one-step reduction performs one contraction in a non-answer term and is
defined as

1. locating a potential redex and its evaluation context in the non-answer term through
a number of decomposition steps,

2. contracting this potential redex if it is an actual one (otherwise the non-answer term
is stuck), and

3. recomposing the resulting contractum into the evaluation context:

Definition 36 (standard one-step reduction).

(X, T ) 7→need (X
′, T ′′) iff







〈T, εoi〉term ↓∗dec 〈R, Eio〉redex

R
X;X′
 R T ′

〈T ′, Eio〉io ⇑rec T ′′

Note that the standard one-step reduction is not the compatible closure of R . The com-
patible closure,→R , is closed over general contexts (i.e., terms with a hole), whereas the
standard one-step reduction is closed over the restricted grammar of evaluation contexts.

For example, given a stream of fresh variables X, let us illustrate standard one-step
reduction for the term (let x be λx0.x0 in (x T1) T2) T3:

〈(let x be λx0.x0 in (x T1) T2) T3, εio〉term

↓∗decdecomposition
��

〈let x be λx0.x0 in (εoi : : (� T1) : : (� T2))[x], (� T3) : :εio〉redex

〈
X;X
 R , id〉contraction of (V )
��

〈let x be λx0.x0 in ((λx0.x0) T1) T2, (� T3) : :εio〉io

⇑recrecomposition
��

(let x be λx0.x0 in ((λx0.x0) T1) T2) T3
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7. Storeless call-by-need evaluation

Proposition 37 (unique standard one-step reduction). For any term T and stream of fresh
variables X such that (X, T ) 7→need (X

′, T ′) holds, T ′ and X′ are unique.

Proof. Corollary of unique decomposition (Proposition 33), unique contraction (Proposi-
tion 35), and unique recomposition (Proposition 30).

7.4.8 Standard reduction-based evaluation

The standard reduction-based evaluation is defined as the iteration of the standard one-
step reduction. It thus enumerates the successive call-by-need reducts, i.e., the standard
reduction sequence, of any given term:

Definition 38 (standard reduction-based evaluation). Standard reduction-based evalua-
tion, 7→∗need, is the reflexive, transitive closure of standard one-step reduction, 7→need.

Proposition 39 (unique standard reduction-based evaluation to answers). For any term
T and stream of fresh variables X such that (X, T ) 7→∗need (X

′, A) holds, A and X′ are unique.

Proof. Corollary of unique standard reduction (Proposition 37).

7.4.9 Conclusion and perspectives

As illustrated here, there is substantially more than meets the eye in a reduction semantics.
In addition, extensional properties such as unique decomposition, standardization, and

hygiene do not only ensure the existence of a deterministic evaluator extensionally, but it is
our thesis that they also provide precious intensional guidelines. Indeed, after exegetically
spelling out what does not readily meet the eye, things become compellingly simple:

• refocusing the standard reduction-based evaluation immediately gives a reduction-
free abstract machine (Section 7.5.1) and compressing the corridor transitions of
this abstract machine improves the efficiency of its execution (Section 7.5.2);

• we can then move from the relational view of small-step abstract machines to the
functional view of big-step abstract machines (Section 7.6);

• refunctionalizing the compressed big-step abstract machine with respect to the eval-
uation contexts gives a reduction-free evaluation function in continuation-passing
style (Section 7.7.1). Mapping this evaluation function back to direct style gives a
functional implementation of a natural semantics (Section 7.7.2).3

All of these semantic artifacts are correct by construction, and their operational behaviors
rigorously mirror each other in a lock-step sort of way. For one example, the semantic
artifacts agree not only up to α-equivalence but up to syntactic equality. For another
example, should one be tempted to fine-tune either of these semantic artifacts, one is then
in position to adjust the others to keep their operational behaviors in line, or to understand
why this alignment is not possible and where coherence got lost in the fine-tuning [61].

3 Recently [167], Pirog and Biernacki have used the CPS transformation and defunctionalization to connect
Launchbury and Sestoft’s natural semantics for lazy evaluation [134, 195] and Peyton Jones’s spineless tagless
G-machine [160].
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7.5. From reduction semantics to abstract machine

〈T, Eio〉term →refocus D iff 〈T, Eio〉io ⇑rec T ′ ∧ 〈T ′, εio〉term ↓∗dec D

Figure 7.4: Reduction-based refocusing

7.5 From reduction semantics to abstract machine

This section implements the first half of the programme outlined in Section 7.4.9. We first
go from the standard reduction-based evaluation of Definition 38 (that enumerates all
the successive reducts in the standard reduction sequence) to a reduction-free evaluation
(that does not perform this enumeration because all the reducts are deforested away).
This reduction-free evaluation takes the form of an abstract machine.

7.5.1 Refocusing: from reduction semantics
to abstract machine

By recomposing and then immediately decomposing, a reduction-based evaluator takes a
detour from a redex site, up to the top of the term, and back down again to the next redex
site. The steps that make up this detour can be eliminated by refocusing [71]. Refocusing
the reduction-based evaluation of a reduction semantics yields a reduction-free evaluation
that directly navigates in a term from redex site to redex site without any detour via the
top of the term.

Refocusing replaces successive recompositions and decompositions by a ‘refocus’ rela-
tion that associates a contractum and its (inside-out) evaluation context to an answer or
a decomposition consisting of the next potential redex and associated evaluation context:

Tn ↓∗dec

""

Tn+1 ↓∗dec

%%

Tn+2

// 〈Rn, Eio
n 〉
contract

//
+

〈T ′n, Eio
n 〉

⇑rec ;;

refocus
// 〈Rn+1, Eio

n+1〉
contract

//
+

〈T ′n+1, Eio
n+1〉

⇑rec 99

An An+1

Figure 7.4 displays the naive, reduction-based definition of refocusing: an evaluation
context is recomposed around a contractum and the resulting reduct is decomposed either
into an answer or into another potential redex and its evaluation context. This definition
is ‘reduction-based’ because the intermediate reduct is constructed.

Surprisingly, optimal refocusing consists of simply continuing with decomposition from
the contractum and its associated evaluation context, according to the standard reduction
strategy [71], here as well as in all the reduction semantics in Felleisen and Flatt’s lecture
notes on programming languages and lambda calculi [86]. (This is another reason why
we place such store in the decomposition function of a reduction semantics.)

Figure 7.5 displays the optimal, reduction-free definition of refocusing: a contractum
and an evaluation context are directly associated with an answer or another potential
redex and its evaluation context simply by decomposing the contractum in the evaluation
context. This definition is ‘reduction-free’ because no intermediate reduct is constructed.
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7. Storeless call-by-need evaluation

〈T, Eio〉term →refocus D iff 〈T, Eio〉term ↓∗dec D

Figure 7.5: Reduction-free refocusing

Reduction-free evaluation is defined, after an initial decomposition of the input term,
as the iteration of contraction and reduction-free refocusing (i.e., term decomposition in
the current evaluation context):

Definition 40 (standard reduction-free evaluation). Let →step be one-step contraction

and refocusing:
X;X′
−→step = ↓∗dec ∪

X;X′
 R ↓∗dec, where 〈R, Eio〉redex

X;X′
 R ↓∗dec D iff R

X;X′
 R T ∧

〈T, Eio〉term ↓∗dec D. Standard reduction-free evaluation, →∗step, is the transitive closure of

→step. Notationally we use
X;X′
−→*

step to express that X is the input stream and X′ is a suffix
of X obtained after iterating→step.

Evaluation is thus defined with the decomposition transitions from Figure 7.3 plus, for
each contraction rule from Section 7.4.6, one transition towards decomposing the con-
tractum in the current evaluation context. Like decomposition in Figure 7.3, evaluation
therefore takes the form of an abstract machine.4 This abstract machine is displayed in
Figure 7.6.

Proposition 41 (full correctness). For the abstract machine of Figure 7.6,

(X, T ) 7→∗need (X
′, A) ⇔ 〈T, εio〉term

X;X′
−→*

step 〈A〉answer.

Proof. Corollary of the correctness of refocusing [71, 197].

7.5.2 Transition compression: from abstract machine
to abstract machine

In the abstract machine of Figure 7.6, some of the transitions yield a configuration for
which there unconditionally exists another transition: all transitions to a term-configuration
with a known term, all transitions to a context-configuration with a known context, and all
transitions to a redex-configuration with a known redex (i.e., all transitions to redex). For
example, the application of any let expression, which is a redex, gives rise to the following
unconditional transitions:

〈(let x be T1 in A) T2, Eio〉redex
X;X
−→step 〈let x be T1 in A T2, Eio〉term

X;X
−→step 〈A T2, (let x be T1 in �) : : Eio〉term

X;X
−→step 〈A, (� T2) : : (let x be T1 in �) : : Eio〉term

These so-called “corridor transitions” from one configuration to another can be hereditar-
ily compressed so that the first configuration yields the last one in one transition.

4Giving decomposition another format would make evaluation inherit this format.
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7.5. From reduction semantics to abstract machine

〈ðnñ, Eio〉term
X;X
−→step 〈Eio, ðnñ〉context

〈succ T , Eio〉term
X;X
−→step 〈T, (succ �) : : Eio〉term

〈x , Eio〉term
X;X
−→step 〈Eio, (εoi , x)〉reroot

〈λx .T , Eio〉term
X;X
−→step 〈Eio, λx .T 〉context

〈T0 T1, Eio〉term
X;X
−→step 〈T0, (� T1) : : Eio〉term

〈let x be T1 in T , Eio〉term
X;X
−→step 〈T, (let x be T1 in �) : : Eio〉term

〈εio, A〉context
X;X
−→step 〈A〉answer

〈(succ �) : : Eio, A〉context
X;X
−→step 〈succ A, Eio〉redex

〈(� T1) : : Eio, A〉context
X;X
−→step 〈A T1, Eio〉redex

〈(let x be T1 in �) : : Eio, A〉context
X;X
−→step 〈Eio, let x be T1 in A〉context

〈(let x be � in Eoi[x]) : : Eio, A〉context
X;X
−→step 〈let x be A in Eoi[x], Eio〉redex

〈(let x be T1 in �) : : Eio, (Eoi, x)〉reroot
X;X
−→step 〈T1, (let x be � in Eoi[x]) : : Eio〉term

〈F : : Eio, (Eoi, x)〉reroot
X;X
−→step 〈Eio, (Eoi : : F , x)〉reroot

where F 6= let x be T in �

〈succ ðnñ, Eio〉redex
X;X
−→step 〈ðn′ñ, Eio〉term

where n′ = n+ 1
〈succ (let x be T in A), Eio〉redex

X;X
−→step 〈let x be T in succ A, Eio〉term

〈(λx .T ) T1, Eio〉redex
(x′ , X);X
−→step 〈let x′ be T1 in T[x′/x], Eio〉term

〈(let x be T1 in A) T2, Eio〉redex
X;X
−→step 〈let x be T1 in A T2, Eio〉term

〈let x be V in Eoi[x], Eio〉redex
X;X
−→step 〈let x be V in T , Eio〉term

where 〈V, Eoi〉oi ⇑rec T
〈let x be let y be T1 in A in Eoi[x], Eio〉redex

X;X
−→step 〈let y be T1 in let x be A in T , Eio〉term

where 〈x , Eoi〉oi ⇑rec T

Figure 7.6: Storeless abstract machine for call-by-need evaluation

Other transition compressions are determined by the structure of the term or of the
evaluation context, and proceed over several steps. For example, analogously to what
happens in Proposition 32, a term-configuration with an answer in a context always yields
a context-configuration with this context and this answer:

〈let x1 be T1 in let x2 be T2 in · · · let xn be Tn in V , Eio〉term
X;X
−→step 〈let x2 be T2 in · · · let xn be Tn in V , (let x1 be T1 in �) : : Eio〉term
· · ·

X;X
−→step 〈V, (let xn be Tn in �) : : · · · : : (let x2 be T2 in �) : : (let x1 be T1 in �) : : Eio〉term

X;X
−→step 〈(let xn be Tn in �) : : · · · : : (let x2 be T2 in �) : : (let x1 be T1 in �) : : Eio, V 〉context
· · ·

X;X
−→step 〈Eio, let x1 be T1 in let x2 be T2 in · · · let xn be Tn in V 〉context
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So, rather than turning the answer inside-out into the prefix of a context (with transitions
over term-configurations) until its innermost value is reached, and then turning this prefix
inside-out back into the answer (with transitions over context-configurations), we can
directly refocus the original term-configuration into the final context-configuration:

Proposition 42 (refocusing over answers). For any A, Eio and X,

〈A, Eio〉term
X;X
−→*

step 〈E
io, A〉context

Proof. Induction on A.

Likewise, we can compress the transitions from a term-configuration over any term
Eoi[x] to a term-configuration over x , using the reverse concatenation “�” defined in Sec-
tion 7.4.3:

Proposition 43 (restoring outside-in evaluation contexts). For any T, Eio, Eoi and X such
that 〈T, Eoi〉oi ⇑rec T ′,

〈T ′, Eio〉term
X;X
−→*

step 〈T, Eoi ◦io Eio〉term

Proof. Induction on Eoi.

Finally, we can short-cut the search for the definiens of a needed variable:

Proposition 44 (locating a definiens). For any x, T , Eoi, Eio
1 , Eio

2 , and X, where x is not
declared in Eio

1 ,

〈Eio
1 : : (let x be T in Eoi[x]) : : Eio

2 , (Eoi, x)〉reroot
X;X
−→*

step

〈T, (let x be � in (Eoi ◦oi Eio
1 )[x]) : : Eio

2 〉term

Proof. Induction on Eio
1 .

The resulting abstract machine is displayed in Figure 7.7. No occurrences of “�” ap-
pear in the final abstract machine because in the course of compression all occurrences
introduced by Proposition 43 are subsequently eliminated by Proposition 44.

Proposition 45 (full correctness). For the abstract machine of Figure 7.7,

(X, T ) 7→∗need (X
′, A) ⇔ 〈T, εio〉term

X;X′
−→*

step 〈A〉answer.

Proof. By Proposition 41 and calculation using Propositions 42, 43, and 44.
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〈ðnñ, Eio〉term
X;X
−→step 〈Eio, ðnñ〉context

〈succ T , Eio〉term
X;X
−→step 〈T, (succ �) : : Eio〉term

〈x , Eio〉term
X;X
−→step 〈Eio, (εoi , x)〉reroot

〈λx .T , Eio〉term
X;X
−→step 〈Eio, λx .T 〉context

〈T0 T1, Eio〉term
X;X
−→step 〈T0, (� T1) : : Eio〉term

〈let x be T1 in T , Eio〉term
X;X
−→step 〈T, (let x be T1 in �) : : Eio〉term

〈εio, A〉context
X;X
−→step 〈A〉answer

〈(succ �) : : Eio, ðnñ〉context
X;X
−→step 〈Eio, ðn′ñ〉context

where n′ = n+ 1
〈(succ �) : : Eio, let x be T in A〉context

X;X
−→step 〈(succ �) : : (let x be T in �) : : Eio, A〉context

〈(� T1) : : Eio, λx .T 〉context
(x′ , X);X
−→step 〈T[x′/x], (let x′ be T1 in �) : : Eio〉term

〈(� T2) : : Eio, let x be T1 in A〉context
X;X
−→step 〈(� T2) : : (let x be T1 in �) : : Eio, A〉context

〈(let x be T1 in �) : : Eio, A〉context
X;X
−→step 〈Eio, let x be T1 in A〉context

〈(let x be � in Eoi[x]) : : Eio, V 〉context
X;X
−→step 〈T, (let x be V in �) : : Eio〉term

where 〈V, Eoi〉oi ⇑rec T

〈
�

let x be �
in Eoi[x]

�

: : Eio,
�

let y be T1
in A

�

〉context
X;X
−→step 〈

�

let x be �
in Eoi[x]

�

: :
�

let y be T1
in �

�

: : Eio, A〉context

〈(let x be T1 in �) : : Eio, (Eoi, x)〉reroot
X;X
−→step 〈T1, (let x be � in Eoi[x]) : : Eio〉term

〈F : : Eio, (Eoi, x)〉reroot
X;X
−→step 〈Eio, (Eoi : : F , x)〉reroot

where F 6= let x be T in �

Figure 7.7: The storeless abstract machine of Figure 7.6 after transition compression

7.6 Small-step abstract machines define relations,

big-step abstract machines define functions

A deterministic small-step abstract machine is characterized by a single-step state-transition
system that associates a machine configuration with the next and is iterated toward a final
state, if there is one. This characterization is aptly formalized by a relation that associates
any non-final state to its successive states. The transitive closure of this relation then
describes the transition sequence of any given term as well as its final state, if there is
one. In contrast, a big-step abstract machine is characterized by a collection of mutually
tail-recursive transitions mapping a configuration to a final state, if there is one. This
characterization is aptly formalized by a function that maps any non-final state to a final
state, if there is one. Here we have no interest in the actual reduction sequences towards
a final state.

The difference between the two styles of abstract machines is not typically apparent
in the abstract-machine specifications found in programming-language semantics. A ma-
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7. Storeless call-by-need evaluation

chine specification is normally presented as a small-step abstract machine given by reading
the transition arrow as the definition of a single-step transition relation to be iterated and
with the configuration labels as passive components of the configurations. However, the
same specification can equally be seen as a big-step abstract machine if the transition la-
bels are interpreted as tail-recursive functions, with the transition arrow connecting left-
and right-hand sides of their definitions.

The following diagram depicts the states and transitions of the abstract machine in
Figure 7.7:

〈Eio, (Eoi, x)〉reroot
//oo

��
〈T, Eio〉term

//oo
��

〈Eio, A〉context
//

��
〈A〉answer

States can be viewed as a sum type of labeled components, and the transition arrows as a
relation that maps any non-final state to its successive states. Alternatively, the states can
be viewed as a set of mutually (tail-)recursive functions and the transition arrows as tail
calls between the functions. By Proposition 39 we know that final states are unique, and
thus we can model the big-step abstract machine as a partial function mapping any term
to its unique final state, if there is one.

These two views (of small steps and of big steps) are relevant to transform an abstract
machine implementing an operational semantics into an interpreter implementing a nat-
ural semantics. Such interpreters operate in big steps, and it is for this reason that we
now shift gears and view the abstract machine of Figure 7.7 as a big-step one with evalua-
tion defined by a partial function. These two views on an abstract machine are illustrated
in 7.A.2 and 7.A.3 with a simpler example. From a programming perspective [67], the
correctness of these two views is established by the lightweight fusion program transfor-
mation [155].

7.7 From abstract machine to evaluation functions

This section implements the second half of the programme outlined in Section 7.4.9.
We start from the big-step abstract machine of Figure 7.7 and refunctionalize it into a
continuation-passing interpreter (Section 7.7.1), which we then map back to direct style
(Section 7.7.2). Observing that a component of the resulting direct-style interpreter is
in defunctionalized form, we refunctionalize it (Section 7.7.3). Refunctionalization and
the direct-style transformation are illustrated in 7.A.3, 7.A.4 and 7.A.5 with a simpler
example.

7.7.1 Refunctionalization: from abstract machine
to continuation-passing interpreter

Defunctionalization and refunctionalization: Reynolds introduced defunctional-
ization [70, 176] to derive first-order evaluators from higher-order ones. Defunctionaliza-
tion turns a function type into a sum type, and function application into the application of
an apply function dispatching on the sum type. Its left inverse, refunctionalization [69],
can transform first-order abstract machines into higher-order interpreters. It specifically
works on programs that are in defunctionalized form, i.e., in the image of Reynolds’s
defunctionalization.
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Towards refunctionalizing the big-step abstract machine of Figure 7.7: The
big-step abstract machine of Figure 7.7 is not in defunctionalized form with respect to
the inside-out evaluation contexts. Indeed these contexts are consumed by the two tran-
sition functions corresponding to 〈Eio, A〉context and 〈Eio, (Eoi, x)〉reroot rather than by the
single apply function demanded for refunctionalization. This mismatch can be fixed by
introducing a sum type discriminating between the (non-context) arguments to the two
transition functions and combining them into a single transition function [69]. The left
summand (tagged “ans”) holds an answer, and the right summand (tagged “var”) pairs a
variable whose value is needed and an incrementally-constructed outside-in context used
to get back to the place in the term where the value was needed.

Three of the context constructors occur on the right-hand sides of their own apply
function clauses. When refunctionalized, these correspond to recursive functions and
therefore appear as named functions.

The refunctionalized abstract machine is an interpreter for lazy evaluation in continua-
tion-passing style, where the continuations are the functional representation of the inside-
out contexts.

7.7.2 Back to direct style: from continuation-passing interpreter
to natural semantics

It is a simple matter to transform the continuation-passing interpreter described in Sec-
tion 7.7.1 into direct style [56]. The continuations do not represent any control effect
other than non-tail calls, so the resulting direct-style interpreter does not require first-
class control operators [66].

In the present case, the interpreter of Section 7.7.1 implements a natural semantics
(i.e., a big-step operational semantics) for lazy evaluation. This semantics is displayed in
Figure 7.8. In reference to Figure 7.7,

• there is one term transition and one ⇓eval judgement for each syntactic construct;

• for every context transition, there is a corresponding judgment over the ans injection
tag:

– two ⇓succ judgments for the two transitions on the frame “succ �”,
– two ⇓apply judgments for the two transitions on the frame “� T”,
– one ⇓bind judgement for the transition on the frame “let x be T in �”, and
– two ⇓force judgements for the two transitions on the frame “let x be � in Eoi[x]”;

and

• for every reroot transition, there is a corresponding judgment over the var injection
tag: one for each context frame, plus one for when there is a match.

Proposition 46 (full correctness).

〈T, εio〉term
X;X′
−→*

step 〈A〉answer ⇔ T X⇓X′

eval ans(A).

Proof. Corollary of the correctness of defunctionalization and the CPS transformation.

As illustrated in 7.A.6 and 7.A.5, the natural semantics of Figure 7.8 is implemented
as an interpreter in direct style. Following Reynolds’s functional correspondence, it can
be CPS transformed and defunctionalized towards the abstract machine of Figure 7.7.
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ðnñ X⇓X
eval ans(ðnñ)

T X⇓X′

eval r r X′⇓X′′

succ r ′

succ T X⇓X′′

eval r ′ x X⇓X
eval var(x , εoi)

λx .T X⇓X
eval ans(λx .T )

T0
X⇓X′

eval r r T1
X′⇓X′′

apply r ′

T0 T1
X⇓X′′

eval r ′

T X⇓X′

eval r (x , T1, r) X′⇓X′′

bind r ′

let x be T1 in T X⇓X′′

eval r ′ ans(ðnñ) X⇓X
succ ans(ðn′ñ)

where n′ = n+ 1

ans(A) X⇓X′

succ r (x , T, r) X′⇓X′′

bind r ′

ans(let x be T in A) X⇓X′′

succ r ′ var(x , Eoi) X⇓X
succ var(x , Eoi : : (succ �))

T[x ′/x] X⇓X′

eval r (x′, T1, r) X′⇓X′′

bind r ′

(ans(λx .T )) T1
(x′ , X)⇓X′′

apply r ′

(ans(A)) T2
X⇓X′

apply r (x , T1, r) X′⇓X′′

bind r ′

(ans(let x be T1 in A)) T2
X⇓X′′

apply r ′

(var(x , Eoi)) T1
X⇓X

apply var(x , Eoi : : (� T1))

(x , T1, ans(A)) X⇓X
bind ans(let x be T1 in A)

T1
X⇓X′

eval r (x , r, Eoi) X′⇓X′′

force r ′

(x , T1, var(x , Eoi)) X⇓X′′

bind r ′

(x , T1, var(y, Eoi)) X⇓X
bind var(y, Eoi : : (let x be T1 in �))

where x 6= y

〈V, Eoi〉oi ⇑rec T T X⇓X′

eval r (x , V, r) X′⇓X′′

bind r ′

(x , ans(V ), Eoi) X⇓X′′

force r ′

(x , ans(A), Eoi) X⇓X′

force r (y, T1, r) X′⇓X′′

bind r ′

(x , ans(let y be T1 in A), Eoi) X⇓X′′

force r ′

(x , var(y, Eoi
1 ), Eoi) X⇓X

force var(y, Eoi
1 : : (let x be � in Eoi[x]))

Figure 7.8: Heapless natural semantics for call-by-need evaluation

7.7.3 Refunctionalization: from natural semantics
to higher-order evaluation function

The natural-semantics implementation of Section 7.7.2 is already in defunctionalized form
with respect to the first-order outside-in contexts. Indeed, as already mentioned in Sec-
tion 7.4.4, the recomposition function of Definition 27 and Figure 7.1 is the corresponding
apply function.

An outside-in context acts as an accumulator recording the path from a variable whose
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Result = (µX .Answer+ (Var× (X → X )))× FreshVars

eval : Term× FreshVars→ Result
eval(ðnñ, X) = (ans(ðnñ), X)

eval(x , X) = (var(x , λr.r), X)
eval(λx .T, X) = (ans(λx .T ), X)
eval(T0 T1, X) = apply(eval(T0, X), T1)

eval(let x be T1 in T, X) = bind(x , T1, eval(T, X))
eval(succ T, X) = succ(eval(T, X))

apply : Result× Term→ Result
apply((ans(λx .T ), (x′, X)), T1) = bind(x′, T1, eval(T[x ′/x], X))

apply((ans(let x be T1 in A), X), T2) = bind(x , T1, apply((ans(A), X), T2))
apply((var(x , h), X), T1) = (var(x , λr.apply(h @ r, T1)), X)

bind : Var× Term× Result→ Result
bind(x , T1, (ans(A), X)) = (ans(let x be T1 in A), X)

bind(x , T1, (var(x , h), X)) = force(x , eval(T1, X), h)
bind(x , T1, (var(y, h), X)) = (var(y, λr.bind(x , T1, h @ r)), X)

where x 6= y

force : Var× Result× (Result→ Result)→ Result

force(x , (ans(V ), X), h) = bind(x , V, h @ (ans(V ), X))
force(x , (ans(let y be T1 in A), X), h) = bind(y, T1, force(x , (ans(A), X), h))

force(x , (var(y, h′), X), h) = (var(y, λr.force(x , h′@ r, h)), X)

succ : Result→ Result
succ((ans(ðnñ), X)) = (ans(ðn′ñ), X) where n′ = n+ 1

succ((ans(let x be T in A), X)) = bind(x , T, succ((ans(A), X)))
succ((var(x , h), X)) = (var(x , λr.succ(h @ r)), X)

Figure 7.9: The heapless natural semantics of Figure 7.8 after refunctionalization

value is needed to its binding site. The recomposition function turns this accumulator
inside-out again when the variable’s value is found. The refunctionalized outside-in con-
texts are functional representations of these accumulators.

The resulting refunctionalized evaluation function is displayed in Figure 7.9. Nota-
tionally, higher-order functions are introduced with λ and eliminated with @, which is
infix.

Proposition 47 (full correctness).

T X⇓X′

eval ans(A) ⇔ eval(T, X) = (ans(A), X′).

Proof. Corollary of the correctness of defunctionalization.

This higher-order evaluation function exhibits a computational pattern that we find
striking because it also occurs in Cartwright and Felleisen’s work on extensible denota-
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tional language specifications [41]: each valuation function yields either a (left-injected
with “ans”) value or a (right-injected with “var”) variable together with a higher-order
function. For each call, this higher-order function may yield another right-injected higher-
order function that, when applied, restores this current call. As illustrated in 7.B, this
computational pattern is typical of control: the left inject stands for an expected result,
while the right inject acts as an exceptional return that incrementally captures the cur-
rent continuation. This observation also points at a structural commonality in Ariola and
Felleisen’s small-step semantics [12], which uses delimited control, and in Cartwright and
Felleisen’s big-step semantics [41], which uses undelimited control. At any rate, for unde-
limited control, this computational pattern was subsequently re-invented by Fünfrocken
to implement process migration [97, 191, 205], and then put to use to implement first-
class continuations [140, 158]. In the present case, this pattern embodies two distinct
computational aspects—one intensional and the other extensional:

How: The computational pattern is one of delimited control, from the point of use of a
let-declared variable to its point of declaration.

What: The computational effect is one of a write-once state since once the delimited
context is captured, it is restored with the value of the let-declared variable.

These two aspects were instrumental in Cartwright and Felleisen’s design of extensible
denotational semantics for (undelimited) Control Scheme and for State Scheme [41]. For
let insertion in partial evaluation, these control and state aspects were re-discovered and
put to use by Sumii and Kobayashi [203], and for let insertion in type-directed partial
evaluation, by Grobauer and Yang [103]. For normalization by evaluation, this control
aspect was also re-discovered and put to use by Balat et al. [20], who abstract delimited
control from the use site of a lambda-declared variable to its definition site. For call by
need, this control aspect was recently identified and put to new use by Garcia, Lums-
daine and Sabry [99], and this store aspect was originally envisioned by Vuillemin [213],
Wadsworth [215], and initially Landin [131].

These observations put us in position to write the evaluation function of Figure 7.9 in
direct style, either with delimited control operators (one control delimiter for each let dec-
laration, and one control abstraction for each occurrence of a let-declared variable whose
value is needed), or with a state monad, as illustrated in 7.B with a simpler example.

7.8 Deterministic abstract machines define functions

Up to Section 7.6, we scrupulously described small-step computation with relations, be-
fore shifting to functions for describing big-step computation. However, for deterministic
programming languages, functions are sufficient to describe small-step computation, as
done throughout the first author’s lecture notes at AFP 2008 [61]. For example, in the
present work, the decomposition and recomposition functions of Section 7.4, together
with the data type of contexts, are in defunctionalized form. They can therefore easily be
refunctionalized, as illustrated in 7.A. This representational flexibility indicates a large and
friendly degree of expressive freedom for implementing reduction semantics and one-step
reduction functions in a functional programming language, not just for the call-by-need
λ-calculus, but in general.
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7.9 Conclusion

Semantics should be call by need.
– Rod Burstall

Over the years, the two key features of lazy evaluation – demand-driven computation
and memoization of intermediate results – have elicited a fascinating variety of seman-
tic artifacts, each with its own originality and elegance. It is our overarching thesis that
spelling out the methodical search for the next potential redex that is implicit in a reduc-
tion semantics paves the way towards other semantic artifacts that not only are uniformly
inter-derivable and sound by construction but also match what a programming-language
semanticist crafts by hand. Elsewhere, we have already shown that refocusing, etc. do
not merely apply to purely syntactic theories such as, e.g., Felleisen and Hieb’s syntactic
theories of sequential control and state [88, 151]: the methodology also applies to call by
need with a global heap of memo-thunks [7, 27, 167] and to combinatory graph reduc-
tion, connecting term graph rewriting systems à la Barendregt et al. and graph-reduction
machines à la Turner [73, 222]. Here, we have shown that the methodology also applies
to Ariola et al.’s purely syntactic account of call by need.

Acknowledgments: Thanks are due to the anonymous reviewers. We are also grateful
to Zena Ariola, Kenichi Asai, Ronald Garcia, Oleg Kiselyov, Kristoffer Rose, Ilya Sergey and
Chung-chieh Shan for discussions and comments.

The first author heard Rod Burstall’s quote in Section 7.9 from Neil Jones in the late
1980s, but was unable to locate it in writing. In May 2009, he asked Rod Burstall about it:
Rod Burstall made that statement at Edinburgh at the occasion of a seminar by Christopher
Wadsworth in the course of the 1970s.

7.A On refunctionalizing and going back to direct style

The goal of this appendix is to illustrate refunctionalization and the direct-style transfor-
mation. Our running example is an evaluator for a simple language of arithmetic expres-
sions.

7.A.1 Abstract machine for evaluating arithmetic expressions

Our language of arithmetic expressions reads as follows:

Term 3 T ::= ðnñ | T + T | T × T
Value 3 V ::= ðnñ

Evaluation Context 3 E ::= [ ] | E + T | V + E | E × T | V × E

In words: terms are integers, additions, and multiplications; values are integers; and
evaluation contexts specify a left-most inner-most reduction order.
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Here is an abstract machine for this language:

〈ðnñ, E〉term →step 〈E, ðnñ〉context
〈T1 + T2, E〉term →step 〈T1, E + T2〉term
〈T1 × T2, E〉term →step 〈T1, E × T2〉term

〈[ ], ðnñ〉context →step 〈ðnñ〉value
〈E + T2, ðn1ñ〉context →step 〈T2, ðn1ñ + E〉term
〈ðn1ñ + E, ðn2ñ〉context →step 〈E, ðnñ〉context

where n= n1 + n2
〈E × T2, ðn1ñ〉context →step 〈T2, ðn1ñ × E〉term
〈ðn1ñ × E, ðn2ñ〉context →step 〈E, ðnñ〉context

where n= n1 × n2

This abstract machine consists of three states: the first defines the relation on terms, the
second defines the relation on evaluation contexts, and the third is the terminal state of
values. A term T evaluates to a value V iff 〈T, [ ]〉term→∗step 〈V 〉value.

7.A.2 Small-step implementation of the abstract machine

The abstract machine of Section 7.A.1 can be regarded as a small-step abstract machine
defining a relation between any non-final state and its successive state. Let us implement
it in Haskell.

Terms, values and evaluation contexts read as follows:

data Term = Num Int | Add Term Term | Mul Term Term
type Val = Int
data Cont = Empty

| EAddL Cont Term | EAddR Val Cont
| EMulL Cont Term | EMulR Val Cont

States are represented with a data type:

data State = TERM Term Cont | CONT Cont Val | VAL Val

The TERM constructor is used to represent term states, CONT to represent context states,
and VAL to represent the final state.

Transitions are implemented with a function associating each non-final state to its suc-
cessive state:

step :: State→ State
step (TERM (Num n) e) = CONT e n
step (TERM (Add t1 t2) e) = TERM t1 (EAddL e t2)
step (TERM (Mul t1 t2) e) = TERM t1 (EMulL e t2)
step (CONT Empty n) = VAL n
step (CONT (EAddL e t2) n1) = TERM t2 (EAddR n1 e)
step (CONT (EAddR n1 e) n2) = CONT e (n1 + n2)
step (CONT (EMulL e t2) n1) = TERM t2 (EMulR n1 e)
step (CONT (EMulR n1 e) n2) = CONT e (n1 * n2)

Evaluating a term is done by starting in the initial term state with the term and the empty
context and iterating the transition sequence towards a final state:
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iterate :: State→ Val
iterate (VAL n) = n
iterate state = iterate (step state)

main0 :: Term→ Val
main0 t = iterate (TERM t Empty)

7.A.3 Big-step implementation of the abstract machine

The abstract machine of Section 7.A.1 can be equally regarded as a big-step abstract ma-
chine defining a function from terms to values [67]. Let us implement it in Haskell.

Terms, values and evaluation contexts read as in Section 7.A.2.
Transitions are implemented with a set of mutually tail-recursive functions:
term :: Term→ Cont→ Val
term (Num n) e = cont e n
term (Add t1 t2) e = term t1 (EAddL e t2)
term (Mul t1 t2) e = term t1 (EMulL e t2)

cont :: Cont→ Val→ Val
cont Empty n = n
cont (EAddL e t2) n1 = term t2 (EAddR n1 e)
cont (EAddR n1 e) n2 = cont e (n1 + n2)
cont (EMulL e t2) n1 = term t2 (EMulR n1 e)
cont (EMulR n1 e) n2 = cont e (n1 * n2)

main1 :: Term→ Val
main1 t = term t Empty

The term function represents transitions from term states; the cont function represents
transitions from context states; and the final return value represents the final value states.
Evaluating a term is done by invoking the term-transition with the term and the empty
context.

This implementation is in defunctionalized form with respect to the data type of eval-
uation contexts, Cont, and the function, cont, dispatching on that data type: each data
constructor of Cont is consumed by cont which implements how to continue evaluation.
Refunctionalization replaces each call to a data constructor of Cont by the introduction of
a function that implements how to continue evaluation, and each call to cont by the elim-
ination of this function, i.e., its application. For example, cont maps the data constructor
Empty to the identity function; Empty is thus refunctionalized as the identity function.
The function implementing how to continue evaluation is of course the continuation of
an evaluator.

7.A.4 Continuation-passing evaluator

Refunctionalizating the abstract machine of Section 7.A.3 yields the following evaluator,
which is in continuation-passing style (CPS):

evalc :: Term→ (Val→ a)→ a
evalc (Num n) k = k n
evalc (Add t1 t2) k = evalc t1 (λn1→ evalc t2 (λn2→ k (n1 + n2)))
evalc (Mul t1 t2) k = evalc t1 (λn1→ evalc t2 (λn2→ k (n1 * n2)))

main2 :: Term→ Val
main2 t = evalc t (λn→ n)

151



7. Storeless call-by-need evaluation

This evaluator is in CPS since all calls are tail calls and the second parameter is a contin-
uation.

7.A.5 Direct-style evaluator

Applying the direct-style transformation, i.e., the left inverse of the CPS transformation [56],
to the continuation-passing evaluator of Section 7.A.4, we obtain the following evaluator,
which is in direct style:

eval :: Term→ Val
eval (Num n) = n
eval (Add t1 t2) = eval t1 + eval t2
eval (Mul t1 t2) = eval t1 * eval t2

main3 :: Term→ Val
main3 t = eval t

CPS-transforming this direct-style evaluator yields the continuation-passing evaluator of
Section 7.A.4. Defunctionalizing this continuation-passing evaluator yields the abstract
machine of Section 7.A.3. This sequence of program transformations was introduced
in Reynolds’s work on definitional interpreters 4 decades ago [176]. It was put in the
limelight, together with the converse sequence, in the past decade [5, 62].

7.A.6 Natural semantics

The direct-style interpreter of Section 7.A.5 implements the following (big-step) natural
semantics:

T1 ⇓eval ðn1ñ T2 ⇓eval ðn2ñ
T1 + T2 ⇓eval ðnñ

where n= n1 + n2

ðnñ ⇓eval ðnñ T1 ⇓eval ðn1ñ T2 ⇓eval ðn2ñ
T1 × T2 ⇓eval ðnñ

where n= n1 × n2

A term T evaluates to a value V iff T ⇓eval V .
The present natural semantics and the abstract machine of Section 7.A.1 are thus uni-

formly inter-derivable, and they match what a programming-language semanticist would
craft by hand (see Footnote 3, page 138 for a non-trivial recent example).

7.B On the control pattern underlying call by need

The goal of this appendix is to illustrate the control pattern of Figure 7.9. Our running
example counts the number of occurrences of each bound variable in a λ-term. More
precisely, we define a function mapping a closed λ-term of type Term1 into a new λ-
term of type Term2 where each binder λx .T has been tagged with the number of free
occurrences of x in T .

data Term1 = Var1 String
| Lam1 String Term1
| App1 Term1 Term1
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data Term2 = Var2 String
| Lam2 String Int Term2
| App2 Term2 Term2

We present three definitions: one with the control pattern of Figure 7.9 (Appendix
7.B.1), one with its direct-style counterpart using control operators (Appendix 7.B.2),
and one in state-passing style (Appendix 7.B.3). All three are implemented in Haskell.
We have tested them with the Glasgow Haskell Compiler.

7.B.1 Function-based encoding

The main function, count1, calls an auxiliary function, visit, that returns the charac-
teristic sum type of intermediate results: the current answer, left-injected with “Ans”, or
a function resuming the computation of the current intermediate answer, right-injected
with “Var” and tagged with the variable under consideration:

data Intermediate
= Ans Term2
| Var String (()→ Intermediate)

count1 t = case visit t of
Ans t’ → t’
Var x h→ error "open term"

where
visit :: Term1→ Intermediate
visit (Var1 x) = var x
visit (Lam1 x t) = lam x 0 (visit t)
visit (App1 t0 t1) = app (visit t0) (visit t1)

var x = Var x (λ()→ Ans (Var2 x))

lam x n (Ans t) = Ans (Lam2 x n t)
lam x n (Var y h)
| x == y = lam x (n + 1) (h ())
| otherwise = Var y (lam x n ◦ h)

app (Ans t0) (Ans t1) = Ans (App2 t0 t1)
app (Var x h) r = Var x ((λs→ app s r) ◦ h)
app r (Var x h) = Var x ((λs→ app r s) ◦ h)

Each time a variable is visited, its continuation is captured from its point of use to its
point of definition, its count is incremented, and the captured continuation is restored.
The capture is realized by bubbling up with Var, as it were, from a point of use to its lexical
point of definition while accumulating a delimited continuation by function composition.
The restoration is realized by applying this delimited continuation.

7.B.2 Continuation-based encoding

The main function, count2, calls an auxiliary function, visit, that delimits control for
each variable definition, and abstracts control for each variable use, using Dybvig, Peyton-
Jones and Sabry’s monadic framework for subcontinuations [83]:

import Control.Monad.CC

count2 t = runCC (visit t [])
where
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7. Storeless call-by-need evaluation

visit :: MonadDelimitedCont p s m⇒
Term1→ [(String, Term2→ m Term2)]→ m Term2

visit (Var1 x) ms =
(mark x ms) (Var2 x)

visit (Lam1 x t) ms = do
h← reset (λp→ do
let k t = shift p (λk→ do

h← k (return t)
return (λn→ h (n + 1)))

t’← visit t ((x, k) : ms)
shift p (λk→ return (λn→ Lam2 x n t’)))

return (h 0)
visit (App1 t1 t2) ms = do
t1’← visit t1 ms
t2’← visit t2 ms
return (App2 t1’ t2’)

mark x ms =
case lookup x ms of
Just p → p
Nothing→ error "open term"

This implementation reflects the control pattern in 7.B.1 in that the computation incre-
menting the counter is defined at the point of variable definition. However, since the
control abstraction has no free variables, we can unfold it from its definition to its use:

count3 t = runCC (visit t [])
where
visit :: MonadDelimitedCont p s m⇒

Term1→ [(String, p (Int→ Term2))]→ m Term2
visit (Var1 x) ms =
shift (mark x ms) (λk→ do
h← k (return (Var2 x))
return (λn→ h (n + 1)))

visit (Lam1 x t) ms = do
h← reset (λp→ do
t’← visit t ((x, p) : ms)
shift p (λk→ return (λn→ Lam2 x n t’)))

return (h 0)
visit (App1 t0 t1) ms = do
t0’← visit t0 ms
t1’← visit t1 ms
return (App2 t0’ t1’)

mark x ms =
case lookup x ms of
Just p → p
Nothing→ error "open term"

Each time a variable is visited, its continuation is captured from its point of use to its
point of definition, its count is incremented, and the captured continuation is restored.
The capture is realized by using the control operator shift, which abstracts control into
a delimited continuation. The restoration is realized by applying this delimited continua-
tion.
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7.B.3 State-based encoding

The main function, count4, calls an auxiliary function, visit, that threads an association
list of declared variables and numbers of their occurrences by use of a state monad:

import Control.Monad.State

count4 t = evalState (visit t) []
where
visit :: Term1→ State [(String, Int)] Term2
visit (Var1 x) = do
modify (incr x)
return (Var2 x)

visit (Lam1 x t) = do
modify ((x, 0):)
t’← visit t
n ← gets (snd ◦ head)
modify tail
return (Lam2 x n t’)

visit (App1 t0 t1) = do
t0’← visit t0
t1’← visit t1
return (App2 t0’ t1’)

incr x [] = error "open term"
incr x ((y, n) : ys)
| x == y = (y, n + 1) : ys
| otherwise = (y, n ) : incr x ys

Each time a variable is visited, its association is accessed in the current state, the count in
this association is incremented, which yields a new state, and the computation is resumed
in this new state.
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Chapter 8

A synthetic operational account

of call-by-need evaluation

Joint work with Olivier Danvy.

Abstract

We present the first operational account of call by need that connects theory and
practice. Theory: the storeless operational semantics using syntax rewriting to account
for demand-driven computation and for caching intermediate results. And practice: the
store-based operational technique using memo-thunks to implement demand-driven
computation and to cache intermediate results for subsequent sharing. The practice
was initiated by Landin and Wadsworth and is prevalent today to implement lazy pro-
gramming languages such as Haskell. The theory was initiated by Launchbury and by
Ariola, Felleisen, Maraist, Odersky and Wadler and is prevalent today to reason equa-
tionally about lazy programs, on par with Barendregt et al.’s term graphs. Nobody
knows, however, how the theory of call by need compares to the practice of call by
need: all that is known is that the theory of call by need agrees with the theory of call
by name, and that the practice of call by need optimizes the practice of call by name.

Our operational account takes the form of three new calculi for lazy evaluation of
lambda-terms and our synthesis takes the form of three lock-step equivalences. The
first calculus is a hereditarily compressed variant of Ariola et al.’s call-by-need lambda-
calculus and makes “neededness” syntactically explicit. The second calculus distin-
guishes between strict bindings (which are induced by demand-driven computation)
and non-strict bindings (which are used for caching intermediate results). The third
calculus uses memo-thunks and an algebraic store. The first calculus syntactically cor-
responds to a storeless abstract machine, the second to an abstract machine with local
stores, and the third to a lazy Krivine machine, i.e., a traditional store-based abstract
machine implementing lazy evaluation. The machines are intensionally compatible
with extensional reasoning about lazy programs and they are lock-step equivalent. Each
machine functionally corresponds to a natural semantics for call by need in the style of
Launchbury.

Our results reveal a genuine and principled unity of computational theory and com-
putational practice, one that readily applies to variations on the general theme of call
by need.
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8.1 Introduction

Seen in the historical HAKMEM report [25, Item 101B]:

Let x be a continued fraction
p0 + q0/(p1 + q1/(...)) = p0 + q0/x’

where x’ is again a continued fraction
and the p’s and q’s are integers. [...]
Instead of a list of p’s and q’s,
let x be a subroutine
producing its next p and q each time it is called.
Thus on its first usage, x will "output" p0 and q0
and, in effect, change itself into x’.

Lovely example of a lazy list and of its evaluation, isn’t it? And to think it was programmed
in assembly language too...

But what is lazy evaluation? Lazy evaluation is an embodiment of computation on
demand and of memoization of intermediate results for subsequent reuse, in case of subse-
quent similar demands. In the λ-calculus, lazy evaluation improves the standard reduc-
tion of λ-terms. In functional programming languages, lazy evaluation is implemented by
passing actual parameters “by need” both to user-defined functions and to data construc-
tors. Call by need is traditionally implemented with memo-thunks, as in Gosper’s proce-
dural representation of continued fractions above: parameterless procedures that delay
computation and which, when forced, memoize their result in the store. And indeed lazy
abstract machines canonically use a store to manage memo-thunks. Alternatively, they
use updateable graphs rather than abstract-syntax trees, in which case these graphs play
the rôle of the store [81, 82]. Today, the best-known such store-based abstract machine is
probably Peyton Jones’s Spineless Tagless G-Machine [160], which is the run-time system
of the Glasgow Haskell compiler.

Does this mean that a store is inherently necessary to account for lazy evaluation?
Perhaps surprisingly, the answer is no: in the mid-1990’s [15], in a simultaneous tour de
force, Ariola and Felleisen [12] and Maraist, Odersky and Wadler [141] provided a purely
syntactic, storeless operational account of call by need.

So what has happened since? Somewhat unexpectedly, the store-based implemen-
tation technique of using memo-thunks and the storeless operational account of call by
need have remained disconnected.1 Instead, for example, the control aspect of the store-
less operational account has most recently been sought to emulate this storage effect using
delimited continuations [99] or more generally a computational monad [77].

So what else has happened instead? Sestoft [195] and Maraist et al. [141] have con-
tinued to investigate store-based natural semantics for lazy evaluation, following Launch-
bury’s [134]. Recently, Nakata and Hasegawa have shown the equivalence of variants
of the calculus and Launchbury’s natural semantics [152] and Chang and Felleisen have
designed a new calculus with one axiom and shown it to correspond with Launchbury’s
natural semantics [43]. Other lazy abstract machines have been designed as well [96, 99].
All of these results provide extensional equivalence between the semantics, which yield
equivalent values on identical terminating terms. Also, some of the machines are ostensi-
bly derived but none of the derivation methods seem to have been subsequently reused.

1Indeed, the only known property of Ariola et al.’s call-by-need λ-calculus is its completeness with respect to
the standard reduction of the λ-calculus (i.e., call by name).
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Does this mean that the long-emerged investigation of lazy evaluation is still an ever-
expanding and disconnected exploratory process? Actually, no. Ager et al. [7] have
inter-derived a store-based call-by-need evaluator and a lazy version of the Krivine ma-
chine with a store (Figure 8.2, page 162), using the functional correspondence between
evaluators and abstract machines summarized in Appendix 8.A.2 and originally due to
Reynolds [5, 176]. Biernacka and Danvy [27, Section 9] have inter-derived a reduction
semantics of aλ-calculus with explicit substitutions and a store, λbρl, and the same lazy ver-
sion of the Krivine machine with a store (Figure 8.2), using the syntactic correspondence
between reduction semantics and abstract machines summarized in Appendix 8.A.1. Pirog
and Biernacki [167] have inter-derived Launchbury and Sestoft’s natural semantics for
lazy evaluation and Peyton Jones’s Spineless Tagless G-Machine, using Reynolds’s func-
tional correspondence and formalizing this correspondence in Coq. We have inter-derived
combinatory graph reduction over term graphs à la Barendregt et al. [24] and Turner’s
graph-reduction machine [209], including the Y combinator [73]. And Ariola, Downen,
Herbelin, Nakata and Saurin have put this inter-derivational unity of semantic artifacts to
use for call-by-need sequent calculi [17].

So what is the contribution of the present article? We report a similar major unified
progress in the investigation of lazy evaluation in the λ-calculus. Macroscopically, as de-
picted in Figure 8.13, page 178, we present a connection between the two major accounts
of lazy evaluation—store-based and storeless—across the three major styles of operational
semantics: reduction semantics, abstract machines and natural semantics. And micro-
scopically, as defined in Section 8.4, our connection is based on a lock-step equivalence
between the small-step semantics.

In what does our synthetic account differ from others? Our account is dual to Hardin,
Maranget and Pagano’s [107], who seek invariant structures in existing abstract machines
using a calculus of explicit substitutions, and to Douence and Fradet’s [82], who seek
common structures in existing abstract machines to establish a taxonomy. Indeed we
end with abstract machines as semantic artifacts that are in the common range of the
syntactic correspondence (Appendix 8.A.1) and of the functional correspondence (Ap-
pendix 8.A.2). We also illustrate how tuning one semantics mechanically gives rise to
another, e.g., Launchbury’s natural semantics and Sestoft’s abstract machine.

Keeping in mind the answers to the series of questions above, the rest of this article is
organized as follows:2 Section 8.2 first contrasts call by name and call by need. Section 8.3
presents our first starting point: a store-based lazy version of the Krivine abstract machine.
Section 8.4 presents our notion of lock-step equivalence. Section 8.5 presents our second
starting point: a reduction semantics for call-by-need reduction. Section 8.6 then presents
abstract machines for call-by-need evaluation, and Section 8.7 natural semantics for call-
by-need evaluation. Figure 8.1 depicts our overall story.

Prerequisites and notations: We expect the reader to be acquainted with the for-
mats of a (small-step) reduction semantics, an abstract machine, and a (big-step) natural
semantics, as can be gathered, e.g., in Felleisen et al.’s recent textbook [89] and in Danvy’s
lecture notes at AFP 2008 [61]. We use x and y to range over names and use subscripts

2In the wake of the previous 700 papers about lazy evaluation, it is something of a challenge to write an original
introduction for yet another article about lazy evaluation. In the 701st paper [77], Danvy et al. started with an
unashamedly apocryphal anecdote illustrating computation on demand and memoization of intermediate results.
In the present paper, and as no doubt spotted by the zealous reader already, we wrote the present introduction in
call-by-need style with a series of Socratic questions concluded with a request to keep their answers in mind.
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as well as primes to distinguish meta-variables in a syntactic category, e.g., x0, x1, x ′, x ′′.
We assume all initial terms to be closed λ-terms defined by the usual BNF of the pure
λ-calculus:

Λ 3 t ::= x | λx .t | t t

and let fv(t) denote the set of free variables in t. When unambiguous, we allow meta-
variables from different semantic specifications to overlap. When ambiguous, we super-
script the meta-variables with the notion of reduction of the particular semantics, e.g.,
tR .

8.2 Call by need vs. call by name

Lazy evaluation is an optimization of the standard reduction of λ-terms and as such we
expect any two strategies for lazy evaluation to assign identical meanings to identical
λ-terms. However, the operational behaviors specified by the two strategies can be read-
ily observed on even small programs, such as this fully applied expression using Church
numbers:

n
︷ ︸︸ ︷

cm (cm (· · · (cm id id) · · · ) id) id

where cn = λs.λz.

n
︷ ︸︸ ︷

s (s · · · (s z) · · · ). Under call by name, the above expression takes an
exponential number of steps to reduce, whereas under call by need, the number of steps
is polynomial.

In this regard, call-by-need evaluation is a particular optimization and it is this opti-
mization we want to characterize (so we are not interested in optimal reduction here [19,
138]). As language users and implementors alike, we are interested in reasoning about
the time and space complexity of programs under call by need. In other words, we are
concerned with the operational behavior of its specification as opposed to the equational
theory it enables, which is already aptly covered by call by name. We therefore wish to
precisely relate the operational behavior specified by the call-by-need λ-calculus to the
established method of implementing the call-by-need evaluation strategy. To this end,
we first argue for what is a canonical specification of the call-by-need reduction strategy
(Section 8.3). We then define a notion of lock-step equivalence by which we can prove
the operational behavior of reduction strategies equivalent up to a fine-grained notion of
steps (Section 8.4).

8.3 Store-based call-by-need evaluation and reduction

The call-by-need evaluation strategy originates with Wadsworth [215] and was subse-
quently and independently used for programming languages by Henderson and Mor-
ris [113] and by Friedman and Wise [95]. All of these specifications have one idea in
common: to delay the evaluation of actual parameters with thunks allocated in a global
store, and to force this evaluation on demand and memoize the resulting value in the
thunk. In this section, we specify a canonical machine for call-by-need evaluation of pure
λ-terms which reflects this implementational practice. We then inter-derive the corre-
sponding notion of one-step reduction.
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8. A synthetic operational account of call-by-need evaluation

Syntax:
Term 3 t ::= x | λx .t | t t
Value 3 v ::= λx .t

Context 3 E ::= � | E t | x := E
Store 3 σ ::= ε | σ[x = t]

Transition rules:

〈λx .t, E, σ〉term →S 〈E, λx .t, σ〉cont
〈t0 t1, E, σ〉term →S 〈t0, E[� t1], σ〉term
〈x , E, σ〉term →S 〈t, E[x := �], σ〉term

where t = σ(x)
and t 6∈ Value

〈x , E, σ〉term →S 〈E, v, σ〉cont
where v = σ(x)

〈�, v, σ〉cont →S 〈v, σ〉ans
〈E[� t1], λx .t, σ〉cont →S 〈t[x′/x], E, σ[x′= t1]〉term

where x′ 6∈ dom(σ)
〈E[x := �], v, σ〉cont →S 〈E, v, σ[x = v]〉cont

Execution starts in a term-configuration with an empty context and an empty store, and
proceeds through successive transitions. In the second cont-transition, an actual parame-
ter is delayed in a thunk. In the second-to-last term-transition, a thunk is forced. In the
last cont-transition, a thunk has completed and its result is memoized.

Figure 8.2: Lazy version of the Krivine abstract machine

8.3.1 A machine for call-by-need evaluation

Our starting point is the properly tail-recursive and lazy variant of the Krivine machine
displayed in Figure 8.2 [51]. This machine features memo-thunks in a global store. In
words: Terms are pure λ-terms. Values are λ-abstractions. Evaluation contexts consist of
the empty context, an application context, and an update context. The machine uses two
transition functions: term dispatching on terms and cont dispatching on evaluation con-
texts. Here demand-driven computation is implemented by the third term-transition and
the second cont-transition, while memoization is implemented by the last cont-transition.

This machine represents a canonical implementation of the call-by-need evaluation
strategy using actual substitutions. The update contexts represent “update markers” in the
sense of Fairbairn and Wray’s Three Instruction Machine [84]. Furthermore, this machine
can be inter-derived with traditional store-based call-by-need evaluators, as shown by
Ager et al. [7].

Definition 48 (reduction-free evaluation). A term t ∈ Λ evaluates to a value v iff

〈t, �, ε〉term→∗S 〈v, σ〉ans

holds, where→∗S is the transitive closure of→S . (See Figure 8.2.)
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Syntax:
Term 3 t ::= x | λx .t | t t | x := t
Value 3 v ::= λx .t

Context 3 E ::= � | E t | x := E
Store 3 σ ::= ε | σ[x = t]

Redex 3 r ::= v t | x := v | x

Contraction rules:

(I) 〈E[(λx .t) t1], σ〉 → 〈E[t[x′/x]], σ[x′= t1]〉
where x′ 6∈ dom(σ)

(V ) 〈E[x := v], σ〉 → 〈E[v], σ[x = v]〉
(L) 〈E[x], σ〉 → 〈E[x := t], σ〉

where t = σ(x)
and t 6∈ Value

(eV ) 〈E[x], σ〉 → 〈E[v], σ〉
where v = σ(x)

S = (I)∪ (V )∪ (L)∪ (eV )

Standard one-step reduction:

〈t, σ〉 7→S 〈t ′, σ′〉 iff







decomposition: t = E[r]
(〈E[r], σ〉, 〈E[t ′′], σ′〉) ∈ S

recomposition: t ′ = E[t ′′]

Figure 8.3: The reduction semantics corresponding to Figure 8.2

8.3.2 A semantics for call-by-need reduction

Using Biernacka and Danvy’s syntactic correspondence between reduction semantics and
abstract machines [27], we can inter-derive the lazy Krivine machine of Section 8.3.1
with a reduction-based counterpart. This reduction-based semantics takes the form of a
reduction semantics and is displayed in Figure 8.3. Compared to the machine, an update
context is given a term representation in the form of an update expression. The grammar
of potential redexes gives rise to the four contraction rules. Here, demand-driven compu-
tation is captured by Rule (I) and Rule (L), and memoization is captured by Rule (V ).

This reduction semantics is the closure-free counterpart of λbρl [27, Section 9].

Definition 49 (reduction-based evaluation). A term t ∈ Λ reduces to a value v iff 〈t, ε〉 7→∗S
〈v, σ〉 holds, where 7→∗S is the reflexive-transitive closure of 7→S . (See Figure 8.3.)

8.3.3 From evaluation to reduction

In summary, we have defined a reduction semantics for call-by-need reduction. Through
the syntactic correspondence, this semantics corresponds to a store-based lazy version of
the Krivine abstract machine which is inter-derivable with a traditional store-based lazy
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8. A synthetic operational account of call-by-need evaluation

evaluator. Therefore, these semantics specify the canonical evaluation strategy of call by
need.

Proposition 50 (full correctness). For any term t ∈ Λ,

〈t, �, ε〉term→∗S 〈v1, σ〉ans ⇐⇒ 〈t, ε〉 7→∗S 〈v2, σ〉

where v1 =α v2.

Proof. Corollary of the full correctness of refocusing [71, 197].

8.4 Lock-step equivalence

Our notion of lock-step equivalence is based on Milner’s weak bisimulation or observable
equivalence of processes [145, Chapter 5]. In contrast to bisimulation where one equates
objects within the same system, we are here interested in relating objects between sepa-
rately defined systems. Also, we are not concerned with labeling.

We understand a process to be the steps defined by a transition system, in our case the
standard reduction sequence as defined by the standard one-step reduction of a reduction
semantics. Two processes are lock-step equivalent if any step taken by one can be mirrored
by the other modulo the steps considered internal to the other process:

Definition 51 (Lock-step equivalence). Let→α be a transition system with internal transi-
tions→α̂ and let→β be a transition system with internal transitions→β̂ . A binary relation
R between the states of→α and→β is a lock-step relation if for all a R b:

a→α a′⇒∃b′ : b→∗
β̂
→β→∗β̂ b′ ∧ a′R b′

and
b→β b′⇒∃a′ : a→∗

α̂
→α→∗α̂ a′ ∧ a′R b′

Two states a and b are lock-step equivalent, a α≈β b, iff there exists a lock-step relation R
such that a R b. If both sets of internal transitions are empty, then the lock-step relation
is akin to a strong bisimulation.

8.5 Reduction semantics for call-by-need reduction

This section presents four reduction semantics for call-by-need evaluation together with
their standard reduction. The first one is the λlet-calculus and is due to Ariola, Felleisen,
Maraist, Odersky, and Wadler (Section 8.5.1). We then calculate a revised semantics
where (1) we hereditarily contract potential redexes, and (2) we make explicit when de-
notables are needed from their point of use to their point of declaration (Section 8.5.2).
This latter distinction leads us to introducing a new term to represent this def-use chain:
a strict let expression. A more uniform distinction between strict and non-strict let ex-
pressions leads us to ‘decoupling’ the reduction semantics into one with two contexts
(Section 8.5.3). Interpreting one of these two contexts as a global store yields the reduc-
tion semantics of Figure 8.3 (see Section 8.5.4) which specifies the canonical evaluation
strategy of call by need: Ariola et al.’s reduction semantics therefore also specifies the
canonical evaluation strategy of call by need.
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8.5. Reduction semantics for call-by-need reduction

Syntax:
Term 3 t ::= x | λx .t | t t | let x = t in t
Value 3 v ::= λx .t

Answer 3 a ::= λx .t | let x = t in a
Context 3 E ::= � | E t | let x = t in E | let x = E in E[x]

Redex 3 r ::= a t | let x = a in E[x]

Contraction rules:

(I) (λx .t) t1 → let x = t1 in t
(C) (let x = t1 in a) t2 → let x = t1 in a t2
(V ) let x = v in E[x]→ let x = v in E[v]
(A) let x = let y = t1

in a
in E[x]

→ let y = t1
in let x = a

in E[x]

R = (I)∪ (C)∪ (V )∪ (A)

Standard one-step reduction:

t 7→R t ′ iff







decomposition: t = E[r]
contraction: (r, t ′′) ∈ R

recomposition: t ′ = E[t ′′]

Figure 8.4: The call-by-need λlet-calculus

8.5.1 Storeless reduction semantics

Our starting point is the standard call-by-need reduction for the λlet-calculus that is com-
mon to Ariola, Felleisen, Maraist, Odersky, and Wadler’s articles [12, 15, 141], renam-
ing non-terminals for notational uniformity. This calculus and its standard reduction are
displayed in Figure 8.4. In words: Terms are pure λ-terms with let expressions declar-
ing denotables. Values are λ-abstractions. Answers are let expressions nested around a
value. Evaluation contexts are terms with a single hole and are constructed according to
the standard call-by-need reduction strategy. Redexes come in two forms: the application
of an answer, or the binding of an answer to a denotable whose value is needed. Each
gives rise to a pair of contraction rules:

• Rules (I) and (C) arise from the application of an answer. (I) introduces a let
binding, while (C) allows let bindings to commute with applications.

• Rules (V ) and (A) arise from the binding of an answer to a variable whose value
is needed. (V ) hygienically substitutes a definiens (here: a value) for a variable
occurrence, while (A) re-associates let bindings.

The standard one-step reduction is the compatible closure over the contraction rules with
respect to the evaluation contexts.

Definition 52 (reduction-based evaluation [15]). A term t ∈ Λ reduces to an answer a
iff t 7→∗R a holds, where 7→∗R is the reflexive-transitive closure of 7→R . (See Figure 8.4.)
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8.5.2 Revised storeless reduction semantics

In this section, we develop a revised version of the storeless reduction semantics with
contraction rules that more closely match the rules of the store-based reduction semantics
in Section 8.3.2.

Hereditary contraction: Examining the contraction rules of Figure 8.4, we see that a
contractum of Rule (C) contains a redex of the form a t. This redex can thus be further
contracted by either Rule (C) or Rule (I). Likewise, a contractum of Rule (A) contains
a redex of the form let x = a in E[x]. This redex can thus be further contracted by
either Rule (A) or Rule (V ). More precisely, by straightforward induction on the following
definition of answer contexts,

Ans Ctx 3 A ::= � | let x = t in A

we relate the following terms under the reflexive transitive closure of the standard one-
step reduction relation:

A[λx .t] t1 7→∗R A[let x = t1 in t]
let x = A[v] in E[x] 7→∗R A[let x = v in E[v]]

Strict let expressions: The reduction semantics of Section 8.5.1 cleverly specifies
what it means for a denotable to be “needed.” Specifically, a denotable x is needed
in a term t if t can be uniquely decomposed into E[x]. Therefore, the let expression
“let x = t1 in t” can be in one of two states: if t = E[x], we say that the let is strict,
forcing evaluation of the definiens; and if t 6= E[x], we say that the let is non-strict,
postponing the evaluation of the definiens.

Let us make this property syntactically explicit in terms, using a strict let expression
“let x := t in E[x]” where x is needed in the body E[x]. In contrast, the original let
expression “let x = t in t” is a non-strict let expression. Strict let expressions are then
introduced and eliminated with the following rules:

let x = t1 in E[x]→ let x := t1 in E[x]
let x := v in E[x]→ let x = v in E[v]

In the case where t1 is a value, this introduction rule and this elimination rule are applied
consecutively in the reduction sequence. To cater for that case, we fuse these two rules
into a new one, (eV ).

Applying the two changes (hereditary contraction and introduction of strict let expres-
sions) to the reduction semantics of Section 8.5.1 we obtain the semantics displayed in
Figure 8.5.

Definition 53 (reduction-based evaluation). A term t ∈ Λ reduces to a value v in an
answer context A iff t 7→∗C A[v] holds, where 7→∗C is the reflexive-transitive closure of 7→C .
(See Figure 8.5.)

Proposition 54 (full correctness). For any closed t ∈ Λ, t R≈C t.

Proof. There exists a lock-step relation overR andC , where (C), (A) and (L) are internal
transitions. (See Figure 8.15.)
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8.5. Reduction semantics for call-by-need reduction

Syntax:

Term 3 t ::= x | λx .t | t t | let x = t in t | let x := t in E[x]
Value 3 v ::= λx .t

Ans Ctx 3 A ::= � | let x = t in A
Context 3 E ::= � | E t | let x = t in E | let x := E in E[x]

Redex 3 r ::= A[v] t | let x := A[v] in E[x] | let x = t in E[x]

Contraction rules:

(I) A[λx .t] t1 → A[let x = t1 in t]
(V ) let x := A[v] in E[x]→ A[let x = v in E[v]]
(L) let x = t in E[x]→ let x := t in E[x]

where t 6∈ Value

(eV ) let x = v in E[x]→ let x = v in E[v]

C = (I)∪ (V )∪ (L)∪ (eV )

Standard one-step reduction:

t 7→C t ′ iff







decomposition: t = E[r]
contraction: (r, t ′′) ∈ C

recomposition: t ′ = E[t ′′]

Figure 8.5: The revised call-by-need λlet-calculus

8.5.3 Decoupled reduction semantics

The reduction semantics of Section 8.5.1 distinguishes strict and non-strict forms only
in its specification of evaluation contexts. In Section 8.5.2, strictness is made explicit
in terms, yet strict and non-strict forms remain coupled during contraction. Examining
the contraction rules of Figure 8.5, we see that strict let expressions are introduced to
guide computation while non-strict let expressions are introduced to store intermediate
results. In this section, we decouple strict and non-strict contexts, thereby separating the
concerns of computation from the concerns of mere storage of intermediate results. The
resulting semantics is displayed in Figure 8.6. The defining difference is that non-strict
let expressions (in the form of non-strict contexts) are no longer interleaved in the terms.
Therefore:

• Terms no longer include non-strict let expressions and strict let expressions delimit
just the non-strict context.

• Strict contexts are terms with a hole in strict position: the operand of an application,
or the term bound by a strict let expression.

• Non-strict contexts are nested non-strict let expressions.

• Rules (I) and (V ) directly place non-strict let bindings in the non-strict context.

• Rules (L) and (eV ) directly look up denotables in the non-strict context.
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Syntax:
Term 3 t ::= x | λx .t | t t | let x := t in A
Value 3 v ::= λx .t

Non-strict Context 3 A ::= � | let x = t in A
Strict Context 3 E ::= � | E t | let x := E in A

Redex 3 r ::= v t | let x := v in A | x

Contraction rules:

(I) 〈E[(λx .t) t1], A〉 → 〈E[t], A[let x = t1 in �]〉
(V ) 〈E[let x := v in A1], A〉 → 〈E[v], A[let x = v in A1]〉
(L) 〈E[x], A〉 → 〈E[let x := t in A2], A1〉

where A= A1[let x = t in A2]
and t 6∈ Value

(eV ) 〈E[x], A〉 → 〈E[v], A〉
where A= A1[let x = v in A2]

D = (I)∪ (V )∪ (L)∪ (eV )

Standard one-step reduction:

〈t, A〉 7→D 〈t ′, A′〉 iff







decomposition: t = E[r]
(〈E[r], A〉, 〈E[t ′′], A′〉) ∈ D

recomposition: t ′ = E[t ′′]

Figure 8.6: The decoupled call-by-need λ-calculus

The standard one-step reduction is now defined over a term and a non-strict context:

Definition 55 (reduction-based evaluation). A term t ∈ Λ reduces to a value v and a non-
strict context A iff 〈t, �〉 7→∗D 〈v, A〉 holds, where 7→∗D is the reflexive-transitive closure of
7→D . (See Figure 8.6.)

Proposition 56 (full correctness). For any closed t ∈ Λ,

t C≈D 〈t, �〉

Proof. There exists a lock-step relation over C and D, with no internal transitions.
(See Figure 8.17.)

8.5.4 Store-based reduction semantics

The reduction semantics of Section 8.5.3 distinguishes between strict and non-strict contexts—
strict contexts for guiding computation and non-strict contexts for storing intermediate
results. In this section, we accentuate this distinction by interpreting strict contexts as
evaluation contexts and by representing non-strict contexts—which, by hygiene, all de-
clare distinct denotables—with a global store. The result is a syntactic theory of the tra-
ditional implementation technique for lazy evaluation, the one using memo-thunks in a
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8.5. Reduction semantics for call-by-need reduction

Syntax:
Term 3 t ::= x | λx .t | t t | x := t
Value 3 v ::= λx .t

Context 3 E ::= � | E t | x := E
Store 3 σ ::= ε | σ[x = t]

Redex 3 r ::= v t | x := v | x

Contraction rules:

(I) 〈E[(λx .t) t1], σ〉 → 〈E[t], σ[x = t1]〉
(V ) 〈E[x := v], σ〉 → 〈E[v], σ[x = v]〉
(L) 〈E[x], σ〉 → 〈E[x := t], σ〉

where t = σ(x)
and t 6∈ Value

(eV ) 〈E[x], σ〉 → 〈E[v], σ〉
where v = σ(x)

S = (I)∪ (V )∪ (L)∪ (eV )

Standard one-step reduction:

〈t, σ〉 7→S 〈t ′, σ′〉 iff







decomposition: t = E[r]
(〈E[r], σ〉, 〈E[t ′′], σ′〉) ∈ S

recomposition: t ′ = E[t ′′]

Figure 8.7: The store-based call-by-need λ-calculus

global store. This semantics is displayed in Figure 8.7. The defining difference is that the
global store is never delimited. Therefore:

• Undelimiting update expressions (contexts) replace the delimiting strict let expres-
sions (contexts) in the decoupled semantics.

The standard one-step reduction is defined over a term and a store:

Definition 57 (reduction-based evaluation). A term t ∈ Λ reduces to a value v with a
store σ iff 〈t, ε〉 7→∗S 〈v, σ〉 holds, where 7→∗S is the reflexive-transitive closure of 7→S .
(See Figure 8.7.)

Proposition 58 (full correctness). For any closed t ∈ Λ,

〈t, �〉D≈S 〈t, ε〉

Proof. There exists a lock-step relation over D and S , with no internal transitions.
(See Figure 8.19.)

8.5.5 Summary and conclusions

We have presented four lock-step equivalent reduction semantics for call by need:
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Corollary 59 (full correctness). For any closed t ∈ Λ,

t R≈C t C≈D 〈t, �〉D≈S 〈t, ε〉

Each of these reduction semantics captures a descriptive aspect of call by need: the first
one, which is due to Ariola et al., is storeless and the fourth one is store-based and ac-
counts for the traditional implementation technique of using memo-thunks: Figure 8.7 is
the implicitly hygienic version of Figure 8.3, which syntactically corresponds to the lazy
Krivine machine of Figure 8.2.

8.6 Abstract machines for call-by-need evaluation

In this section, we derive abstract machines from each of the reduction semantics pre-
sented in Sections 8.5.2, 8.5.3, and 8.5.4. To this end, we use the syntactic correspon-
dence developed by Biernacka and Danvy [27]. The method consists of a series of program
transformations between a reduction-based evaluation function, as typically specified by
a reduction semantics, and a reduction-free evaluation function, as typically specified by
an abstract machine (see Appendix 8.A.1). We do not display the abstract machine corre-
sponding to the reduction semantics presented in Section 8.5.1 (Ariola et al.’s) because it
has already been derived by Danvy et al. [77, Figure 7] and is shown in Figure 7.7.

Following common practice, the reduction semantics of Section 8.5 implicitly assume
hygiene in the contraction rules. However, when specifying an abstract machine as the
basis for an implementation, the method of ensuring hygiene should be explicit. Mirroring
implementation practice, we thread a stream of fresh names with the reduction sequence:

X ∈ FreshNames= νX .Name× X .

Each contraction rule therefore inherits and synthesizes this stream.
Following Danvy et al.’s hygiene strategy [77, Section 4.2] as detailed in Section 7.4.2,

we choose to rename λ-bound names when introducing let expressions, thereby enforcing
that all let-bound names are distinct. To this end, we modify the (I)-rule of each reduction
semantics:

(I)C 〈E[(λx .t) t1], (x′, X)〉 → 〈E[let x′= t1 in t[x′/x]], X〉
(I)D 〈E[(λx .t) t1], A, (x′, X)〉 → 〈E[t[x′/x]], A[let x′= t1 in �], X〉
(I)S 〈E[(λx .t) t1], σ, (x′, X)〉 → 〈E[t[x′/x]], σ[x′= t1], X〉

For each of our reduction semantics, the syntactic correspondence mechanically yields a
reduction-free abstract machine where intermediate steps in the reduction sequence have
been deforested away.

8.6.1 Storeless abstract machine

Figure 8.8 displays the abstract machine derived from the storeless reduction semantics of
Section 8.5.2. It uses the same definition of terms, values, answer contexts and evaluation
contexts. (See Figure 8.5.)

We note that the abstract machine of Figure 8.8 is essentially the same as the abstract
machines of Garcia et al. [99] and Danvy et al. [77], which differ only with respect to
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8.6. Abstract machines for call-by-need evaluation

〈λx .t, E〉term
X;X
−→C 〈E, λx .t〉cont

〈t0 t1, E〉term
X;X
−→C 〈t0, E[� t1]〉term

〈let x = t1 in t, E〉term
X;X
−→C 〈t, E[let x = t1 in �]〉term

〈let x := t in E1[x], E〉term
X;X
−→C 〈t, E[let x := � in E1[x]]〉term

〈x , E〉term
X;X
−→C 〈t, E1[let x := � in E2[x]]〉term

where E = E1[let x = t in E2]
and t 6∈ Value

〈x , E〉term
X;X
−→C 〈E, v〉cont

where E = E1[let x = v in E2]

〈�, A[v]〉cont
X;X
−→C 〈A[v]〉ans

〈E[� t1], A[λx .t]〉cont
(x′, X);X
−→C 〈t[x′/x], E[A[let x′= t1 in �]]〉term

〈E[let x = t1 in �], A[v]〉cont
X;X
−→C 〈E, let x = t1 in A[v]〉cont

〈E[let x := � in E1[x]], A[v]〉cont
X;X
−→C 〈E[A[let x = v in E1]], v〉cont

Execution starts in a term-configuration with an empty context and proceeds through
successive transitions. The stream of fresh names X is threaded through. In the second
cont-transition, an actual parameter is delayed in a non-strict let expression. In the second-
to-last term-transition, a non-strict let expression is replaced by a strict let expression,
thereby forcing the evaluation of its definiens. In the last cont-transition, the evaluation
of the definiens has completed and the strict let expression is replaced by a non-strict let
expression declaring the resulting value.

Figure 8.8: Storeless machine for call by need

their handling of hygiene. This equivalence arises from two facts: (1) the hereditary com-
pression in the revised semantics is superseded by transition compression of the abstract
machine, and (2) even without introducing strict let expressions, their context counterpart
must still be represented to guide evaluation in the abstract machine.

Definition 60 (reduction-free evaluation). A term t ∈ Λ evaluates to a value in an answer
context A[v] iff

〈t, �〉term
X;X′
−→*

C 〈A[v]〉ans

holds, where→∗C is the transitive closure of→C . (See Figure 8.8.)

Notationally we use
X;X′
−→*

C to express that X is the input stream and X′ is a suffix of X
obtained after iterating→C .

NB. Assuming the initial term to be a pure λ-term (i.e., to contain no let expressions),
we can omit the third and fourth term-transitions. Starting from a pure λ-term, the forms
let x = t in t and let x := t in E[x] are indeed never constructed in the course of execution.

Proposition 61 (full correctness). For any term t ∈ Λ,

t 7→∗C A1[v1] ⇐⇒ 〈t, �〉term
X;X′
−→*

C 〈A2[v2]〉ans
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where v1 =α v2. (In fact, v1 = v2 if, in the reduction sequence, we pick fresh names according
to the stream of fresh names threaded in the abstract machine.)

8.6.2 Decoupled abstract machine

Figure 8.9 displays the abstract machine derived from the decoupled reduction semantics
of Section 8.5.3. It uses the same definition of terms, values, strict contexts and non-strict
contexts. (See Figure 8.6.)

Definition 62 (reduction-free evaluation). A term t ∈ Λ evaluates to a value v with a
non-strict context A iff

〈t, �, �〉term
X;X′
−→*

D 〈v, A〉ans

holds, where→∗D is the transitive closure of→D . (See Figure 8.9.)

As in Section 8.6.1, assuming the initial term to be a pure λ-term, we can omit the third
term-transition.

Proposition 63 (full correctness). For any term t ∈ Λ,

〈t, �〉 7→∗D 〈v1, A1〉 ⇐⇒ 〈t, �, �〉term
X;X′
−→*

D 〈v2, A2〉ans

where v1 =α v2. (Again, v1 = v2 if, in the reduction sequence, we pick fresh names according
to the stream of fresh names threaded in the abstract machine.)

8.6.3 Store-based abstract machine

Figure 8.10 displays the abstract machine derived from the store-based reduction seman-
tics of Section 8.5.4. It uses the same definition of terms, values, evaluation contexts and
stores. (See Figure 8.7.)

Definition 64 (reduction-free evaluation). A term t ∈ Λ evaluates to a value v with a
store σ iff

〈t, �, ε〉term
X;X′
−→*

S 〈v, σ〉ans

holds, where→∗S is the transitive closure of→S . (See Figure 8.10.)

As in Sections 8.6.1 and 8.6.2, assuming the initial term to be a pure λ-term, we can
omit the third term-transition. The abstract machine then coincides with the lazy Krivine
machine in Figure 8.2.

Proposition 65 (full correctness). For any term t ∈ Λ,

〈t, ε〉 7→∗S 〈v1, σ1〉 ⇐⇒ 〈t, �, ε〉term
X;X′
−→*

S 〈v2, σ2〉ans

where v1 =α v2. (One more time, v1 = v2 if, in the reduction sequence, we pick fresh names
according to the stream of fresh names threaded in the abstract machine.)
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〈λx .t, E, A〉term
X;X
−→D 〈E, λx .t, A〉cont

〈t0 t1, E, A〉term
X;X
−→D 〈t0, E[� t1], A〉term

〈let x := t in A1, E, A〉term
X;X
−→D 〈t, E[let x := � in A1], A〉term

〈x , E, A〉term
X;X
−→D 〈t, E[let x := � in A2], A1〉term

where A= A1[let x = t in A2]
and t 6∈ Value

〈x , E, A〉term
X;X
−→D 〈E, v, A〉cont

where A= A1[let x = v in A2]

〈�, v, A〉cont
X;X
−→D 〈v, A〉ans

〈E[� t1], λx .t, A〉cont
(x′, X);X
−→D 〈t[x′/x], E, A[let x′= t1 in �]〉term

〈E[let x := �
in A1[x]]

, v, A〉cont
X;X
−→D 〈E, v, A[let x = v in A1]〉cont

Execution starts in a term-configuration with two empty contexts and proceeds through
successive transitions. The stream of fresh names X is threaded through. In the second
cont-transition, an actual parameter is delayed in a non-strict context. In the second-to-last
term-transition, a non-strict let expression is replaced by a strict let expression, thereby
forcing the evaluation of its definiens. In the last cont-transition, the evaluation of the
definiens has completed and the strict let expression is replaced back by a non-strict let
expression declaring the resulting value.

Figure 8.9: Decoupled machine for call by need

8.6.4 Summary and conclusions

We have presented three equivalent abstract machines for call by need:

Corollary 66 (full correctness). For any t ∈ Λ,

m

m

〈t, �〉term
X;X′
−→*

C 〈A1[v1]〉ans

〈t, �, �〉term
X;X′
−→*

D 〈v2, A2〉ans

〈t, �, ε〉term
X;X′
−→*

S 〈v3, σ〉ans

where v1 = v2 = v3.

Each of these abstract machines captures a descriptive aspect of call by need: the two
first ones are storeless and the third one is store-based and accounts for the traditional
implementation technique of using memo-thunks.

8.7 Natural semantics for call-by-need evaluation

In this section, we derive natural semantics from each of the abstract machines derived in
Sections 8.6.2 and 8.6.3. To this end, we use the functional correspondence initiated by
Reynolds [176] and developed by Danvy et al. [5, 7, 61]. The method consists of a series
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〈λx .t, E, σ〉term
X;X
−→S 〈E, λx .t, σ〉cont

〈t0 t1, E, σ〉term
X;X
−→S 〈t0, E[� t1], σ〉term

〈x := t, E, σ〉term
X;X
−→S 〈t, E[x := �], σ〉term

〈x , E, σ〉term
X;X
−→S 〈t, E[x := �], σ〉term

where t = σ(x)
and t 6∈ Value

〈x , E, σ〉term
X;X
−→S 〈E, v, σ〉cont

where v = σ(x)

〈�, v, σ〉cont
X;X
−→S 〈v, σ〉ans

〈E[� t1], λx .t, σ〉cont
(x′, X);X
−→S 〈t[x′/x], E, σ[x′= t1]〉term

〈E[x := �], v, σ〉cont
X;X
−→S 〈E, v, σ[x = v]〉cont

Execution starts in a term-configuration with an empty context and an empty store, and
proceeds through successive transitions. The store σ and the stream of fresh names X
are threaded through. In the second cont-transition, an actual parameter is delayed in a
thunk. In the second-to-last term-transition, a thunk is forced. In the last cont-transition,
a thunk has completed and its result is memoized.

Figure 8.10: Store-based machine for call by need

of program transformations between an abstract machine and a natural semantics, as
typically specified by a recursive evaluation function in direct style (see Appendix 8.A.2).
We do not display the natural semantics corresponding to the storeless abstract machine
of Section 8.6.1 because it has already been derived by Danvy et al. [77, Figure 8] and is
shown in Figure 7.8.

8.7.1 Decoupled natural semantics

Figure 8.11 displays the natural semantics derived from the abstract machine of Sec-
tion 8.6.2. It uses the same definition of terms, values and non-strict contexts. (See
Figure 8.6.)

We note that the natural semantics of Figure 8.11 is essentially the same as Nakata
and Hasegawa’s instrumented natural semantics [152, Figure 7]. The most notable—
and yet superficial—difference is that Nakata and Hasegawa retain the entire structure
of the evaluation context as part of their structured heaps whereas we only maintain the
structure of the non-strict let expressions.

Definition 67 (evaluation). A term t ∈ Λ evaluates to a value v with a non-strict context
A iff 〈t, �〉 X⇓X′

D 〈v, A〉 holds. (See Figure 8.11.)

NB. Assuming the initial term to be a pure λ-term (i.e., to contain no let expressions), we
can omit the third rule. Indeed, starting from a pure λ-term, the form let x := t in A[x]
can never be constructed by a derivation.
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〈λx .t, A〉 X⇓X
D 〈λx .t, A〉

〈t0, A〉 X⇓(x
′, X′)
D 〈λx .t, A′〉 〈t[x′/x], A′[let x′= t1 in �]〉 X′⇓X′′

D 〈v, A′′〉

〈t0 t1, A〉 X⇓X′′

D 〈v, A′′〉

〈t, A〉 X⇓X′

D 〈v, A′〉

〈let x := t in A1[x], A〉 X⇓X′

D 〈v, A′[let x = v in A1]〉

A= A1[let x = t in A2] 〈t, A1〉
X⇓X′

D 〈v, A′1〉

〈x , A〉 X⇓X′

D 〈v, A′1[let x = v in A2]〉
where t 6∈ Value

A= A1[let x = v in A2]

〈x , A〉 X⇓X′

D 〈v, A1[let x = v in A2]〉

Figure 8.11: Decoupled natural semantics for call by need

〈λx .t, σ〉 X⇓X
S 〈λx .t, σ〉

〈t0, σ〉 X⇓(x
′, X′)
S 〈λx .t, σ′〉 〈t[x′/x], σ′[x′= t1]〉

X′⇓X′′

S 〈v, σ′′〉

〈t0 t1, σ〉 X⇓X′′

S 〈v, σ′′〉

〈t, σ〉 X⇓X′

S 〈v, σ′〉

〈x := t, σ〉 X⇓X′

S 〈v, σ′[x = v]〉

t = σ(x) 〈t, σ〉 X⇓X′

S 〈v, σ′〉

〈x , σ〉 X⇓X′

S 〈v, σ′[x = v]〉
where t 6∈ Value

v = σ(x)
〈x , σ〉 X⇓X

S 〈v, σ〉

Figure 8.12: Store-based natural semantics for call by need

Proposition 68 (full correctness). For any term t ∈ Λ,

〈t, �, �〉term
X;X′
−→*

D 〈v, A〉ans ⇐⇒ 〈t, �〉 X⇓X′

D 〈v, A〉.

8.7.2 Store-based natural semantics

Figure 8.12 displays the natural semantics derived from the abstract machine of Sec-
tion 8.10. It uses the same definition of terms, values and stores. (See Figure 8.7.)

Compared to Launchbury’s [134] and to Maraist et al.’s [141], the natural semantics
in Figure 8.11 explicitly handles name hygiene. Compared to Sestoft’s [195], its handling
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of name hygiene reflects implementational practice. Also, both Launchbury and Sestoft
use preprocessed terms, which prevents a direct syntactic comparison.

Definition 69 (evaluation). A term t ∈ Λ evaluates to a value v with a store σ iff
〈t, ε〉 X⇓X′

S 〈v, σ〉 holds. (See Figure 8.12.)

As in Section 8.7.1, assuming the initial term to be a pure λ-term, we can omit the third
rule.

Proposition 70 (full correctness). For any term t ∈ Λ,

〈t, �, ε〉term
X;X′
−→*

S 〈v, σ〉ans ⇐⇒ 〈t, ε〉 X⇓X′

S 〈v, σ〉.

8.7.3 Summary and conclusions

We have presented two equivalent natural semantics for call-by-need evaluation:

Corollary 71 (full correctness). For any term t ∈ Λ,

〈t, �〉 X⇓X′

D 〈v1, A〉 ⇐⇒ 〈t, ε〉 X⇓X′

S 〈v2, σ〉

where v1 =α v2.

Each of these natural semantics captures a descriptive aspect of call by need: the first one
is storeless and the second one is store-based and accounts for the traditional implemen-
tation technique of using memo-thunks.

Perhaps surprisingly, Launchbury’s natural semantics is to be found between the de-
coupled and store-based natural semantics presented here. The store-based semantics
differs since it uses a global store whereas Launchbury’s semantics does not. The de-
coupled semantics more closely connects with Launchbury’s semantics. The fourth rule
of Figure 8.11 mirrors Launchbury’s Variable rule in that the binding of a denotable is
not visible when reducing its definiens to a value. In addition, the decoupled semantics
extends this restriction to all of the bindings not lexically visible according to the call-
by-need λlet-calculus thereby exposing inherent structure of store. The same can be said
about Sestoft’s abstract machine and the abstract machines presented in Section 8.6.2 and
8.6.3.

8.8 Extensions

In this section we briefly describe a few common extensions on the λ-calculus. Adding
these extensions and applying the equivalence developed here is at the level of an exercise.

8.8.1 Alias optimization

The introduction of a let expression by Rule (I) corresponds to the dynamic allocation of
a delayed application frame. In the case of a denotable, this frame can be eliminated akin
to tail-call optimization. We refine Rule (I) as:

〈E[(λx .t) x1], X〉 → 〈E[t[x1/x]], X〉
〈E[(λx .t) t1], (x′, X)〉 → 〈E[let x′= t1 in t[x′/x]], X〉

where t1 6∈ Name
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This optimization leads to a well-known space optimization of the lazy abstract machine [28,
51, 96].

8.8.2 Generalized contraction

Often, a contraction of Rule (I) directly gives rise to a new (I) redex. In this case, the
series of applications can be done in one step by generalizing Rule (I):

〈E[(λx1.· · ·λxn.t) t1 · · · tn], (x ′1, (· · · , (x ′n, X)))〉
(I)R →

〈E[let x ′1 = t1, · · · , x ′n = tn in t[x ′1/x1, · · · , x ′n/xn]], X〉

The resulting abstract machine is a lazy version of Krivine’s original abstract machine [128].
(Indeed Krivine’s machine implements generalized beta-reduction whereas what is known
as the Krivine machine [51] implements ordinary beta-reduction.)

8.8.3 Preprocessing

Alias optimization and generalized contraction can be further exploited if we split the
reduction in two phases: a compile-time notion of reduction R0:

〈E[t0 t1], (x , X)〉 → 〈E[let x = t1 in t0 x], X〉
where t1 6∈ Name

and a run-time notion of reductionR1 which specializes the rules ofR to the sub-grammar
ofR0-normal forms. Indeed, these preprocessed terms are those used by Launchbury [134,
Section 3.1] and such preprocessing can be viewed as compiling to a term-graph repre-
sentation of terms [24, 73].

The global preprocessing of terms invalidates the assumption used to ensure hygiene
in Section 8.6. Since preprocessing occurs under λ-binders, the introduced let-bound
names might be duplicated during reduction. Proper hygiene must therefore be ensured
by another method, e.g., using explicit substitutions or global renaming.

8.8.4 Cyclic terms

All the inter-derivations of Figure 8.1 scale to cyclic structures starting with the mutually
recursive letrec as defined by Ariola and Felleisen [12]. We are in the process of proving
the lock-step equivalences extended for cyclic terms.

8.9 Conclusion and perspectives

We have presented the first operational account of lazy evaluation that connects theory
and practice, where theory stands for a purely syntactic account and practice stands for
the traditional implementation technique of imperative memo-thunks. This connection
reveals a genuine unity of purpose among theoreticians and implementors and opens the
door to more interaction.

Our account is simple, structured and systematic (lock-step equivalence, syntactic cor-
respondence, and functional correspondence). As depicted in Figure 8.13, it also connects
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independent forays, discoveries, and inventions. It however does not readily account for
issues pertaining to stackability [21, 44], duality [16], and the factorization of an abstract
machine into a byte-code compiler and the corresponding virtual machine [6, 84]—a fu-
ture work.

8.A Outline of the correspondences

This appendix briefly summarizes the syntactic correspondence and the functional corre-
spondence used in the body of this article to connect reduction semantics, abstract ma-
chines and natural semantics. This summary is based on Danvy’s lecture notes at AFP
2008 [61].

8.A.1 The syntactic correspondence

The syntactic correspondence makes it possible to inter-derive the representation of a
reduction semantics and the representation of an abstract machine as pure functional
programs.

A reduction semantics is defined with a grammar of terms, a notion of normal form,
a collection of potential redexes, a partial contraction function (this function is partial
because not all potential redexes are actual ones: terms may be stuck), and a reduction
strategy that determines a grammar of reduction contexts. The reduction strategy is im-
plemented with a decomposition function that maps a term in normal form to itself and a
term not in normal form to a potential redex and its reduction context. The recomposition
function is a left fold over a reduction context. One-step reduction of a term which is not
in normal form (1) locates the first potential redex in this term according to the reduction
strategy by decomposing this term into a potential redex and its reduction context, (2)
contracts this redex if it is an actual one, and (3) recomposes the contractum over the
reduction context, yielding a reduct. Evaluation is defined as the iteration of one-step
reduction: this iteration enumerates the reduction sequence; it is thus reduction-based.
Evaluation can become stuck, or yield a term in normal form, or diverge.

From reduction-based evaluation to reduction-free evaluation: The goal of re-
focusing is to deforest, rather than enumerate, the reducts of a reduction sequence. To
this end, each consecutive call to decompose over the result of a call to recompose is re-
placed by one call to a refocus function that optimally navigates from a reduction site to
the next reduction site. The result is a small-step abstract machine.

From small-step to big-step abstract machine: The small-step abstract machine
is transformed into a big-step abstract machine using Ohori and Sasano’s lightweight fu-
sion [67, 155].

Transition compression: The corridor transitions of the big-step abstract machine are
compressed.
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8. A synthetic operational account of call-by-need evaluation

8.A.2 The functional correspondence

The functional correspondence makes it possible to inter-derive the representation of an
evaluation function and the representation of an abstract machine as pure functional pro-
grams.

Lambda-lifting: If the evaluation function contains scope-sensitive local functions, their
free variables become parameters, and the resulting scope-insensitive functions float up
to the top-level lexical scope, yielding recursive equations. Lambda-dropping is the left
inverse of lambda-lifting.

Closure conversion: If the recursive equations are higher-order, i.e., use functions as
values, these functions are represented as closures, i.e., pairs of terms and lexical envi-
ronments. Closure unconversion is the left inverse of closure conversion.

Given a compositional evaluation function implementing a denotational semantics, the
result of lambda-lifting and closure conversion is a typical functional program implement-
ing a natural semantics.

CPS transformation: All intermediate results are named, their computation is sequen-
tialized (which yields ‘A-normal forms’), and all functions are passed an extra function
representing the rest of the computation: the continuation. The result of the transforma-
tion is in the eponymous Continuation-Passing Style. The direct-style transformation is
the left inverse of the CPS transformation.

Defunctionalization: The function space of continuations is partitioned into a sum
type. Each introduction of a continuation is transformed into an injection into this sum
type, and each elimination of a continuation is transformed into a call to a function dis-
patching over the sum type. Refunctionalization is the left inverse of defunctionalization.

8.A.3 Synergy

The functional correspondence and the syntactic correspondence synergize because of
the concrete coincidence between the data type of evaluation contexts (obtained by de-
functionalizing the continuation of the big-step evaluation function) and the data type of
reduction contexts (obtained by defunctionalizing the continuation of the small-step re-
duction function). The abstract connection between reduction order and evaluation order
was first pointed out by Plotkin [169].

8.B Lock-step equivalence proofs

This appendix proves lock-step equivalence, as defined in Definition 51, between each of
the reduction semantics of Section 8.5.1, 8.5.2, 8.5.3 and 8.5.4. In each of these proofs
we define two relations: the first relates the contexts of two semantics, and the second
relates the terms of two semantics. The relation on contexts it built such that the relation
on terms can be defined in terms of closing contexts, i.e., a context that when plugged
with a suitable term will produce a closed term. To this end, the context relation includes
sets of names that ensure this property. These sets are orthogonal to the proofs and can
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freely be ignored. Since decomposition is deterministic, a reducible term can have only
one active redex. Thus, each proof proceeds by case analysis on the grammar of redexes.

8.B.1 Original and revised

The difference between the reduction sequences described by the storeless λlet-calculus
(Section 8.5.1) and the revised calculus (Section 8.5.2) is that (A) and (C) contractions are
done hereditarily and if a denotable is needed during evaluation this is explicitly visible
in the syntax of terms. Therefore, any let expression of the form let x = t1 in t where
t = E[x] is converted to a strict let expression let x := t1 in E[x] where we know the
decomposition property to always hold for the body of the strict let. We characterize this
difference in the fourth rule of C in Figure 8.14 by relating let bindings that have the
decomposition property with strict let bindings. The remaining rules simply relate the
remaining evaluation-context constructions:

Definition 72 (Related contexts). An original context E is related to a revised context E′

iff E CX
Y E′ where X is the set of denotables lexically visible from the hole of the contexts

and Y is the set of free variables of the contexts. (See Figure 8.14.)

Using the relation on contexts we state the relation on terms as being any pure term
in two related contexts, such that the resulting terms are closed:

Definition 73 (Related terms). An original term t is related to a revised term t ′ iff t B t ′.
(See Figure 8.15.)

Proposition 74 (Lock-step relation). The relation B in Figure 8.15 is a lock-step relation
over R and C where (A), (C) and (L) are internal transitions.

Proof. Let tR B tC . Assuming that tR and tC are reducible terms, we proceed by case
analysis on redexes.

Case a t1 and A[v] t1: By inversion on B:

ER[A[v] t1] B EC [A[v] t1]

The left-hand side contracts by a series of internal (C) transitions followed by a single (I)
transition:

ER[A[λx .t] t1] 7→∗(C) ER[A[(λx .t) t1]]
7→(I) ER[A[let x = t1 in t]]

and the right-hand side contracts by a single (I) transition:

EC [A[λx .t] t1] 7→(I) EC [A[let x = t1 in t]]

Here both reducts are related by B. (In this case the contractums are even syntactically
the same).
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Case let x = a in ER1 [x] and let x := A[v] in EC1 [x]:
By inversion on B:

ER[let x = A[v] in ER1 [x]] B EC [let x := A[v] in EC1 [x]]

The left-hand side contracts by a series of internal (A) transitions followed by a single (V )
transition:

ER[let x = A[v] in ER1 [x]] 7→
∗
(A) ER[A[let x = v in ER1 [x]]]

7→(V ) ER[A[let x = v in ER1 [v]]]

and the right-hand side contracts by a single (V ) transition:

EC [let x := A[v] in EC1 [x]] 7→(V ) ER[A[let x = v in EC1 [v]]]

Here both reducts are related by B.

Case let x = t1 in EC1 [x]: By inversion on B:

ER[let x = t1 in ER1 [x]] B EC [let x = t1 in EC1 [x]]

If t1 ∈ Value then we have the two contractions:

ER[let x = t1 in ER1 [x]] 7→(V ) ER[let x = t1 in ER1 [t1]]
EC [let x = t1 in EC1 [x]] 7→(eV ) EC [let x = t1 in EC1 [t1]]

with reducts in B.
If t1 6∈ Value then we have a single internal transition:

EC [let x = t1 in EC1 [x]] 7→(L) EC [let x := t1 in EC1 [x]]

where
ER[let x = t1 in ER1 [x]] B EC [let x := t1 in EC1 [x]]

8.B.2 Revised and decoupled

The difference between the reduction sequences described by the revised calculus (Sec-
tion 8.5.2) and the decoupled semantics (Section 8.5.3) is that the decoupled semantics
has completely separated the non-strict let expressions into a non-strict context. There-
fore, in the decoupled semantics, any non-strict let expression is immediately placed out-
side the evaluation context while preserving the same ordering of non-strict let expres-
sions as in the context-sensitive semantics (Rule 3, Figure 8.16). Strict let expressions can
delimit a context in which the bound denotable is needed. To preserve ordering in the
decoupled case, the strict let expressions must delimit the non-strict part of the delimited
context (Rule 4, Figure 8.16).

Definition 75 (Related contexts). A revised context E is related to a decoupled context
〈E′, A〉 iff E CX

Y 〈E
′, A〉 where X is the set of denotables lexically visible from the hole of

the contexts and Y is the set of free variables of the contexts. (See Figure 8.16.)
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� C;; �

E CX
Y E′

E[� t] CX
Y∪(fv(t)\X) E′[� t]

where t ∈ Λ

E CX
Y E′

E[let x = t in �] CX∪{x}
Y∪(fv(t)\X) E′[let x = t in �]

where t ∈ Λ

E1 CX1
Y1

E′1 E2 CX2
Y2

E′2 where x 6∈ X2

E1[let x = � in E2[x]] CX1
Y1∪(Y2\X1∪{x})

E′1[let x := � in E′2[x]]

Figure 8.14: A lock-step relation on contexts of R and C

E CX
; E′

E[t] B E′[t]
where t ∈ Λ and fv(t) ⊆ X

Figure 8.15: A lock-step relation on terms of R and C

� C;; 〈�, �〉

E CX
Y 〈E

′, A〉
E[� t] CX

Y∪(fv(t)\X) 〈E′[� t], A〉
where t ∈ Λ

E CX
Y 〈E

′, A〉

E[let x = t in �] CX∪{x}
Y∪(fv(t)\X) 〈E′, A[let x = t in �]〉

where t ∈ Λ

E1 CX1
Y1
〈E′1, A1〉 E2 CX2

Y2
〈E′2, A2〉 where x 6∈ X2

E1[let x := � in E2[x]] CX1
Y1∪(Y2\X1∪{x})

〈E′1[E
′
2[let x := � in A2]], A1〉

Figure 8.16: A lock-step relation on contexts of C and D

Definition 76 (Related terms). A revised term t is related to a decoupled term and non-
strict context 〈t ′, A〉 iff t B 〈t ′, A〉. (See Figure 8.17.)

Lemma 77 (Context composition).
If EC1 CX1

Y1
〈ED1 , A1〉 and EC2 CX2

Y2
〈ED2 , A2〉 then

EC1 [E
C
2 ] CX1∪X2

Y1∪(Y2\X1)
〈ED1 [E

D
2 ], A1[A2]〉

Proof. By induction on the (second) derivation of C.
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E CX
; 〈E

′, A〉
E[t] B 〈E′[t], A〉

where t ∈ Λ and fv(t) ⊆ X

Figure 8.17: A lock-step relation on terms of C and D

Proposition 78 (Lock-step relation). The relation B in Figure 8.17 is a lock-step relation
over C and D with no internal transitions.

Proof. Let tC B 〈tD , A〉. Assuming that tC and 〈tD , A〉 are reducible terms, we proceed
by case analysis on redexes.

Case A[v] t1 and v t1: By inversion on B:

EC [A[λx .t] t1] B 〈ED[(λx .t) t1], A′[A]〉

where EC CX′

; 〈E
D , A′〉. Thus, we can construct

EC [A] CX
; 〈ED , A′[A]〉

EC [A[let x = t1 in �]] CX∪{x}
; 〈ED , A′[A[let x = t1 in �]]〉

EC [A[let x = t1 in t]] B 〈ED[t], A′[A[let x = t1 in �]]〉

which accounts for the pair of (I) reductions:

EC [A[λx .t] t1] 7→(I) EC [A[let x = t1 in t]]
〈ED[(λx .t) t1], A′[A]〉 7→(I) 〈ED[t], A′[A[let x = t1 in �]]〉

and these reducts are in B.

Case let x := A[v] in E1[x] and let x := v in A1: By inversion on B:

EC [let x := A[v] in EC1 [x]] B 〈ED[let x := v in A1], A′[A]〉

where there exists a ED1 and a ED2 such that ED = ED1 [E
D
2 ] and EC CX

; 〈E
D
1 , A′〉 and

EC1 CX′

Y′ 〈E
D
2 , A1〉 where Y′ ⊆ X. Thus, we can construct:

EC [A[let x = v in �]] CX′′

; 〈E
D
1 , A′[A[let x = v in �]]〉

and by Lemma 77:

EC [A[let x = v in EC1 ]] CX′′′

; 〈E
D
1 [E

D
2 ], A′[A[let x = v in A1]]〉

EC [A[let x = v in EC1 [v]]] B 〈ED1 [E
D
2 [v]], A′[A[let x = v in A1]]〉

which accounts for the pair of (V ) reductions:

EC [let x := A[v] in EC1 [x]] 7→(V ) EC [A[let x = v in EC1 [v]]]
〈ED[let x := v in A1], A′[A]〉 7→(V ) 〈ED[v], A[let x = v in A1]〉

and these reducts are in B:

EC [Ea[let x = v in EC1 ]] CX
; 〈E

D , A[let x = v in A1]〉
EC [Ea[let x = v in EC1 [v]]] B 〈ED[v], A[let x = v in A1]〉
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〈�, �〉 C;; 〈�, ε〉

〈E, A〉 CX
Y 〈E

′, σ〉
〈E[� t], A〉 CX

Y∪(fv(t)\X) 〈E′[� t], σ〉
where t ∈ Λ

〈E, A〉 CX
Y 〈E

′, σ〉

〈E′, A[let x = t in �]〉 CX∪{x}
Y∪(fv(t)\X) 〈E′, σ[x = t]〉

where t ∈ Λ
and x 6∈ dom(σ)

〈E1, A1〉 CX1
Y1
〈E′1, σ1〉 〈E2, A2〉 CX2

Y2
〈E′2, σ2〉

where t ∈ Λ
and x 6∈ dom(σ1)∪ dom(σ2)
and ; =dom(σ1)∩ dom(σ2)

〈E1[E2[let x := � in A2]], A1〉 CX1
Y1∪(Y2\X1∪{x})

〈E′1[E
′
2[x := �]], σ1[σ2[x = t]]〉

Figure 8.18: A lock-step relation on contexts of D and S

Case let x = t in E1[x] and x: By inversion on B:

EC [let x = t1 in E1[x]] B 〈ED[x], A[let x = t1 in A1]〉

where there exists an ED1 , ED2 such that ED = ED1 [E
D
2 ],

EC CX
; 〈E

D
1 , A〉, and EC1 CX′

Y′ 〈E
D
2 , A1〉 where Y′ ⊆ X.

If t1 ∈ Value then we have a pair of (eV ) contractions:

EC [let x = t1 in E1[x]] 7→(eV ) EC [let x = t1 in E1[t1]]
〈ED[x], A[let x = t1 in A1]〉 7→(eV ) 〈ED[t1], A[let x = t1 in A1]〉

with reducts in B.
If t1 6∈ Value then we have a pair of (L) contractions:

EC [let x = t1 in E1[x]] 7→(L) EC [let x := t1 in EC1 [x]]
〈ED[x], A[let x = t1 in A1]〉 7→(L) 〈ED[let x := t1 in A1], A〉

and by the above properties we have that the reducts are in B:

EC [let x := � in EC1 [x]] CX
; 〈E

D
1 [E

D
2 [let x := � in A1]], A〉

EC [let x := t1 in EC1 [x]] B 〈ED[let x := t1 in A1], A〉

8.B.3 Decoupled and store-based

The difference between the reduction sequences described by the decoupled semantics
(Section 8.5.3) and the store-based semantics (Section 8.5.4) is that the store-based se-
mantics “forgets” the internal structure of non-strict contexts, i.e., non-strict contexts be-
come an unstructured store. Therefore, in the store-based semantics, bindings in the store
must have unique names (Rule 3 and 4, Figure 8.18), and since they are never removed
(as is done for non-strict lets) any update expression must have a corresponding binding
in the store (Rule 4, Figure 8.18).
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8. A synthetic operational account of call-by-need evaluation

〈E, A〉 CX
; 〈E

′, σ〉
〈E[t], A〉 B 〈E′[t], σ〉

where t ∈ Λ and fv(t) ⊆ X

Figure 8.19: A lock-step relation on terms of D and S

Definition 79 (Related contexts). A decoupled context 〈E, A〉 is related to a store-based
context 〈E′, σ〉 iff 〈E, A〉 CX

Y 〈E
′, σ〉 where X is the set of denotables lexically visible from

the hole of the contexts and Y is the set of free variables of the contexts. (See Figure 8.18.)

Definition 80 (Related terms). A decoupled term and non-strict context 〈t, A〉 is related
to a store-based term and store 〈t ′, σ〉 iff 〈t, A〉 B 〈t ′, σ〉. (See Figure 8.19.)

Proposition 81 (Lock-step relation). The relation B in Figure 8.19 is a lock-step relation
over D and S with no internal transitions.

Proof. Let 〈tD , A〉 B 〈tS , σ〉. Assuming that 〈tD , A〉 and 〈tS , σ〉 are reducible terms, we
proceed by case analysis on redexes.

Case v t1 and v t1: By inversion on B:

〈ED[(λx .t) t1], A〉 B 〈ES [(λx .t) t1], σ〉

which gives rise to a pair of (I) contractions with reducts in B.

Case let x := v in A1 and x := v: By inversion on B:

〈ED[let x := v in A1], A〉 B 〈ES [x := v], σ〉

which gives rise to a pair of (V ) contractions with reducts in B.

Case x and x: By inversion on B:

〈ED[x], A〉 B 〈ES [x], σ〉

which gives rise to a pair of (L) or (eV ) contractions with reducts in B.
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Chapter 9

The inter-derivation

of graph rewriting, reduction,

and evaluation

This chapter will appear in [223]: Ian Zerny. On graph rewriting, reduction, and evalua-
tion in the presence of cycles. Higher-Order and Symbolic Computation, 2013.

An earlier version appeared in [222]: Ian Zerny. On graph rewriting, reduction and
evaluation. In Zoltán Horváth, Viktória Zsók, Peter Achten, and Pieter Koopman, editors,
Trends in Functional Programming, Volume 10, pages 81–112, Komárno, Slovakia, June
2009. Intellect Books. Best student-paper award of TFP 2009.

Abstract

We inter-derive two prototypical styles of graph reduction: reduction machines à la
Turner and graph rewriting systems à la Barendregt et al. To this end, we adapt Danvy
et al.’s mechanical program derivations from the world of terms to the world of cyclic
graphs. We also outline how to inter-derive a third style of graph reduction: a graph
evaluator.

9.1 Introduction

Graph reduction [215] is a key subject in the specification and implementation of func-
tional programming languages. As such, there is a need for models of graph reduction to
reason about the semantics of functional languages. To this end, two general approaches
have been developed: the theory of term-graph rewriting to specify functional languages
as described by Barendregt et al. [24] and the practice of graph-reduction machines to
implement functional languages as pioneered by Turner [209]. Both approaches give rise
to semantic descriptions of their own. The semantics are constructed separately, possess
different properties and are used for different purposes. Often, however, the language
theoretician has the need for an efficient implementation and the language implementer
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9. The inter-derivation of graph rewriting, reduction, and evaluation

has the use of a more abstract model. The problem then arises of relating such semantics,
as exemplified for λ-terms and for Landin’s SECD machine by Plotkin [68, 131, 169].

We are motivated to consider this problem in the setting of graphs since graph reduc-
tion is closer than term reduction to the actual implementations of modern functional
languages [210]. Despite this closer relation, the two approaches have yet to be fully
connected. Our approach to this problem is to mechanically inter-derive graph rewriting
à la Barendregt and reduction machines à la Turner. In doing so we maintain an explicit
connection between the two semantic artifacts.

Our domain of discourse is the applicative language of S, K, I and Y combinators with
no extensions as defined by the equations:

S x y z = x z (y z), K x y = x , I x = x , and Y x = x (Y x).

where application is left-associative juxtaposition. Making application explicit with the
binary operator A, the left-hand side of the equation for S is: A(A(A(S, x), y), z). The
series of applications from the root of such a term to the leftmost combinator, in this case
S, is called the spine of the term.

This article extends our TFP article [222] to account for cyclic terms. Cyclic terms
enable sharing of locally-recursive subgraphs. In the case of Y, this sharing is due to the
self-reference of the contractum.

9.1.1 Rewriting à la Barendregt

The work of Barendregt et al. [24] provides an account of term-graph rewriting as an
adaptation of term rewriting that includes the notion of graph reduction. Among other
things, this work is used to model sharing [11, 100] and to aid language implementa-
tion [118, 126], and is part of the foundational work on graph reduction [168].

We briefly exemplify Barendregt et al.’s work with a graph rewriting system for the lan-
guage of S, K, I and Y. For a more elaborate presentation, we refer readers to the original
work [24]. An expression is given by a labelled directed graph over the function symbols
F = {S,K, I, Y, A}. A graph is defined by a set of nodes N ; a label function lab : N → F
mapping nodes to labels; and a partial successor function succ : N * N × N from nodes to
child nodes. In our case, succ is defined on exactly the nodes with label A, which denotes
an application, and it produces the operator and operand of the application. A rewrite
rule is a triple 〈g, r, r ′〉, where the first component is a graph, and the second and third are
nodes, named respectively the ‘left root’ and the ‘right root’. A rewrite will in part consist
of redirecting the left root to the right root. The rewrite rules for I, K, S and Y are written
below using Barendregt et al.’s notation for graphs and rewriting rules [24, Section 4.4].
Note that + is used to combine graphs, possibly resulting in a disconnected graph.

I-rule: 〈 r : A(I, x), r, x 〉
K-rule: 〈 r : A(A(K, x), y), r, x 〉
S-rule: 〈 r : A(A(A(S, x), y), z) + r ′ : A(A(x , z), A(y, z)), r, r ′ 〉
Y-rule: 〈 r : A(Y, x) + r ′ : A(x , r ′), r, r ′ 〉

A rule of the form 〈g, r, r ′〉 is said to be a redex of a graph ĝ rooted at r̂ if there is a
morphism, f , that preserves both labels and successors and maps the subgraph of g rooted
at r to ĝ. In other words, f must be able to construct ĝ by filling in placeholders in r
and appending the result to some other graph (possibly the empty graph). Rewriting is
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performed in three steps: given a redex 〈g, r, r ′〉, (1) build a copy of r ′, sharing any nodes
contained in r; (2) redirect all occurrences of r to the copy of r ′; and (3) garbage-collect
all nodes that are no longer accessible from r̂, which could itself be redirected from r to
r ′. As usual, a graph is said to be in normal form if no redex exists.

9.1.2 Reduction à la Turner

By adapting graph reduction to Combinatory Logic, Turner created a convenient and effi-
cient target for the implementation of functional languages [209]. He did so by cleverly
combining the simple reduction mechanism of Combinatory Logic with graph reduction.
A considerable body of work has since followed this path in the form of alternative trans-
lation techniques [40], different sets of combinators [116], concurrent and parallel exten-
sions [38, 139] and alternative reduction machines [39, 120, 126, 159, 160], representing
the current state of the art in functional-language implementations.

Turner’s scheme operated by first translating λ-terms to a graph built with a set of basic
combinators amounting to the assembly language of the reduction machine. The reduc-
tion machine executes by unwinding the spine of the graph while maintaining an ‘ancestor
stack’. When a left-hanging atom (a leaf node) is encountered at the end of the spine, the
machine applies the contraction rule for this atom. The contraction itself is implemented
in terms of a graph transformation, where the arguments are made available through the
ancestor stack. By unwinding to the left, the machine implements normal-order reduc-
tion, where combinators are reduced with possibly unevaluated arguments. However, for
primitive operations, such as addition, the arguments must first be fully evaluated. This
requires unwinding to the right while taking special care in representing and manipulat-
ing the ancestor stack. Since the language considered here does not have such primitive
operations, we instead normalize to full normal form. In contrast, functional-language im-
plementations will typically reduce to weak head normal form. Full normalization ensures
reduction under right branches, which incidentally accounts for the operations needed to
support primitive operations that are strict in their arguments.

9.1.3 On term rewriting, reduction, and evaluation

Languages defined by terms1 in the form of abstract-syntax trees have received consid-
erable attention with respect to specifications, implementations and their interconnec-
tions. Interconnecting such semantic artifacts is often done by methods tailored to the
concrete semantics under consideration. Such methods may provide elegant calcula-
tional connections [117], but these connections are provided on a case-by-case basis.
An alternative approach is to mechanically inter-derive semantic artifacts by program
transformations [62]. The correctness of the connection then follows as a corollary of
the correctness of the individual transformations, where the calculations have been done
generically once and for all. The derivational approach we consider here has successfully
been used to connect a wide range of artifacts and to reflect changes made to one in the
other [29, 63, 65, 68, 76, 77]

1Terms are directed acyclic graphs where a node can have at most one parent.
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9.1.4 On graph rewriting, reduction, and evaluation

Previous work has developed a systematic method to derive abstract machines from calculi
for languages defined by terms.1 In this article we consider languages defined by graphs.2

The use of graphs raises two issues: the representation includes self-referential graphs;
and the interpretation involves sharing-preserving modification by means of copying or
assignment. In consideration of these issues, we present the derivation of a reduction
machine from a graph rewriting system. We do so by adapting the methods used in the
setting of term rewriting and evaluation to the new setting of graph reduction. Our work
hinges on the fact that each inter-derived semantic artifact gives rise to the same trace
of successive contractions [68]: the inter-derivation acts only on the ‘functional glue’ be-
tween each contraction. We illustrate the method by deriving a reduction machine for
the language of S, K, I and Y combinators as the direct result of a series of mechanical
program transformations on a graph rewriting system for the same language. Our presen-
tation focuses on the foundational aspects of graph reduction, and we will not be treating
any issues related to high-performance reduction machines and language implementation.
Our contribution is to connect the graph rewriting system for S, K, I and Y à la Barendregt
with the reduction machine for S, K, I and Y à la Turner.

Prerequisites. All of the semantic specifications are presented as implementations in
Core Standard ML with additional use of references to account for the implementation
of the formal rewriting axioms. Readers acquainted with Standard ML [147] or a related
functional language are equipped to follow the presentation. The reader should be famil-
iar with the derivational approach of Danvy et al. [61, 62, 76], in particular refocusing,
lightweight fusion, defunctionalization and the CPS transformation. Some prior experi-
ence with Combinatory Logic, term rewriting, graph rewriting and reduction machines
would come handy and can be obtained from many sources [23, 53, 159, 168].

Overview. The rest of this article is structured as follows. In Section 9.2, we begin
by presenting a reduction machine for the language of S, K, I and Y combinators that
closely matches the original presentation of Turner. Then we take the calculus of S, K, I
and Y combinators in the style of Barendregt et al. and implement a full graph rewriting
system in Section 9.3. To this end, we start from a simple specification of the rewrit-
ing strategy and derive a full rewriting system implementation where we have made
explicit all of the implicit operations of such a system, using the same data types as in
Section 9.2. With the graph rewriting system as a starting point, in Section 9.4, we
systematically derive the reduction machine of Section 9.2, presenting all intermediate
transformations. Finally, in Section 9.5, we consider further transformations to the re-
duction machine and compare the results with other known artifacts. We conclude in
Section 9.6. The complete derivation, along with tests, can be found on the author’s
home page 〈www.zerny.dk/on-graph-rewriting.html〉.

9.2 Graph reduction

In this section, we present a reduction machine à la Turner in the form of a state transition
system. We start with the type for graphs. A graph is a reference to a node that can either

2Graphs are directed cyclic graphs where a node can have more than one parent.
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(* stack * graph -> unit *)
fun setptr (EMPTY, g)

= ()
| setptr (PUSH (r as ref (A (_, g1)), _), g)
= r := A (g, g1)

| setptr (MARK (r as ref (A (g0, _)), _), g)
= r := A (g0, g)

(* graph * stack -> graph *)
fun unwind (g as ref (A (g0, g1)), gs)

= unwind (g0, PUSH (g, gs))
| unwind (g as ref (C a), gs)
= apply (a, g, gs)

(* atom * graph * stack -> graph *)
and apply (I, _, PUSH (r as ref (A (_, x)), gs))

= (setptr (gs, x);
unwind (x, gs))

| apply (K, _, PUSH ( ref (A (_, x)),
PUSH (r as ref (A (_, y)),
gs)))

= (r := A (ref (C I), x);
setptr (gs, x);
unwind (x, gs))

| apply (S, _, PUSH ( ref (A (_, x)),
PUSH ( ref (A (_, y)),
PUSH (r as ref (A (_, z)),
gs))))

= (r := A (ref (A (x, z)), ref (A (y, z)));
unwind (r, gs))

| apply (Y, _, PUSH (r as ref (A (_, x)), gs))
= (r := A (x, r);

unwind (r, gs))
| apply (_, g, gs)
= continue (gs, g)

(* stack * graph -> graph *)
and continue (EMPTY, g)

= g
| continue (PUSH (g as ref (A (_, g1)), gs), _)
= unwind (g1, MARK (g, gs))

| continue (MARK (g, gs), _)
= continue (gs, g)

(* graph -> graph *)
fun normalize g

= unwind (g, EMPTY)

Figure 9.1: Reduction machine for S, K, I and Y à la Turner

be an atom, corresponding to a basic combinator, or an application of two graphs. We
define graphs with the following ML data types, where the label of a node is represented
by an ML reference, i.e., a location in memory:

datatype atom = I | K | S | Y
datatype node = C of atom | A of graph * graph
withtype graph = node ref
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In order to reduce the right branch of a graph, we need to store information such that
the state can be re-established after completing the reduction of the branch. We choose
to specify the abstract reduction machine as a traditional state-transition system and thus
cannot recursively unwind on the right branch as Turner does. Instead, we mark the
ancestor stack, and when completing reduction on the right branch we pop the mark and
re-establish the previous ancestor stack. By marking the stack, we separate the arguments
of each function application. More on the various techniques for managing the spine stack
can be found in Peyton Jones’s treatise [159]. Our stack scheme gives rise to the following
data type:

datatype stack
= EMPTY
| PUSH of graph * stack
| MARK of graph * stack

Figure 9.1 displays the entire reduction machine as a state transition system with three
functions unwind, apply and continue that implement the operations described in Sec-
tion 9.1.2. The auxiliary procedure setptr rewires the top of stack pointer. One issue
arises when reducing K. The machine cannot globally replace the top most application
node with the graph given by x . Only the top of stack can be rewired and any other ref-
erence will continue to point to the same K-redex. Instead, following Turner [209, p. 43],
an indirection node is installed in the form of an application of I to x , and the machine
proceeds to rewire the top of stack to point at x . It is the process of reducing Y x that
produces cyclic graphs. The result of the reduction is the application of the argument to
the application itself. This cyclic graph represents the infinite expansion of applications
of the argument: x(x(x(...))).

9.3 Graph rewriting

In this section we develop an implementation that is faithful to the graph rewriting system
à la Barendregt as described in Section 9.1.1. We do so by investigating each of the re-
quired steps in turn, making explicit the algorithms and data structures involved following
the style and terminology of Danvy et al. [61, 62].

We start by reusing the data type of graphs from the previous section. For any instance
of type graph, we can construct unique maps for

lab : graph→ F
succ : graph* graph× graph

and ML references aptly account for a set of unique node identifiers. Thus, the implemen-
tation faithfully accounts for a graph.

The rewriting system consists of two parts: the rewriting rules specify how to rewrite
the graph (Section 9.3.1); and the rewriting strategy specifies what to rewrite (Section 9.3.2).

9.3.1 Rewriting rules

In this section we implement the rewriting rules of the system. Remember that graph
rewriting consisted of three phases: building, redirecting and garbage collection. We omit
the treatment of garbage collection and simply rely on the underlying run-time system of
Standard ML to collect unreachable graphs.
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As described in Section 9.1.1, we have four rules: one for each of I, K, S and Y. For
each rule, we have a corresponding constructor in the data type redex:

datatype redex
= RED_I of graph * graph (* (r, x) *)
| RED_K of graph * graph * graph (* (r, x, y) *)
| RED_S of graph * graph * graph * graph (* (r, x, y, z) *)
| RED_Y of graph * graph (* (r, x) *)

Each constructor provides the structure reachable from the ‘left root’ of the redex triple.
Having found a redex, it is to be redirected, or contracted, to form the resulting graph.
For redirecting nodes we use two auxiliary procedures: replace that in-place updates
the contents of an application node, and rewire that redirects a single reference in the
immediate context. Their definitions are:

(* graph * graph * graph -> graph *)
fun replace (g, gl, gr)

= (g := A (gl, gr); g)

(* context * graph -> graph *)
fun rewire (CTX_MT, g)

= g
| rewire (CTX_L (g, gr, k), gl)
= (g := A (gl, gr); gl)

| rewire (CTX_R (g, gl, k), gr)
= (g := A (gl, gr); gr)

The rewriting axioms are implemented by the contract function:
(* redex -> graph *)
fun contract (RED_I (r, x), k)

= rewire (k, x)
| contract (RED_K (r, x, y), k)
= (replace (r, ref (C I), x); rewire (k, x))

| contract (RED_S (r, x, y, z), k)
= replace (r, ref (A (x, z)), ref (A (y, z)))

| contract (RED_Y (r, x), k)
= replace (r, x, r)

For an I-redex, we have nothing to build and simply rewire the root to x . For a K-redex, we
likewise have nothing to build and proceed to rewire the root to x . As noted in Section 9.2,
the root of K is an application node and we cannot simply overwrite it with x . Instead, we
replace it with an indirection node and only rewire the immediate reference to the root.
For an S-redex, we construct nodes for the parts not shared between the left and right root
of the rewrite rule and then replace the root application with the newly constructed nodes.
For a Y-redex, we replace the root application with the application of the argument to the
root itself, thereby constructing a cyclic term. Note that contract, which implements
the rewriting axioms, is an impure and total function: impure since effects are used for
in-place rewriting, and total since contraction is defined on all redexes and as such does
not give rise to stuck graphs.

9.3.2 Rewriting strategy

In this section we implement the rewriting strategy for the system. Following recent work
by Danvy et al. [76], we define the rewriting strategy via a compositional search function
over the term language, in our case graphs. We then derive a decomposition algorithm by
which we can specify the rewriting system in the style of a reduction semantics [89].
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Compositional search. The leftmost-outermost rewriting strategy considered here is a
depth-first left-to-right search through the graph. We implement this strategy as a function
that maps a reducible graph to the first potential redex in the reduction sequence or, if the
graph is in normal form, to itself:

datatype redex_or_nf
= REDEX of redex
| NF of graph

The search is carried out with a straight recursive descent on the graph according to
the rewriting strategy. While descending the search maintains an ancestor list containing
ancestors and right-siblings. Applications are first searched to the left, pushing the ances-
tor and sibling on the list. If no redex is found, the search continues to the right. When a
combinator is found, its arguments are found in the ancestor list. If the combinator is fully
applied a redex is returned. Otherwise, the combinator is not reducible and its subgraph
is therefore in normal from:

(* graph * (graph * graph) list -> redex_or_nf *)
fun search_graph1 (g as ref (C a), gs)

= (case (a, gs)
of (I, (g0, x) :: gs)

=> REDEX (RED_I (g0, x))
| (K, (g0, x) :: (g1, y) :: gs)
=> REDEX (RED_K (g1, x, y))

| (S, (g0, x) :: (g1, y) :: (g2, z) :: gs)
=> REDEX (RED_S (g2, x, y, z))

| (Y, (g0, x) :: gs)
=> REDEX (RED_Y (g0, x))

| (a, gs)
=> NF g)

| search_graph1 (g as ref (A (gl, gr)), gs)
= (case search_graph1 (gl, (g, gr) :: gs)

of REDEX red
=> REDEX red

| NF gl
=> (case search_graph1 (gr, [])

of REDEX red
=> REDEX red

| NF gr
=> NF g))

(* graph -> redex_or_nf *)
fun search1 g = search_graph1 (g, [])

Due to the Y combinator, graphs can contain cycles. The search function is therefore
partial.

Continuation-passing style transformation. Next we CPS transform the search
function to obtain a tail-recursive search function with a higher-order encoding of the
search context:

(* graph * (graph * graph) list * (redex_or_nf -> ’a) -> ’a *)
fun search_graph2 (g as ref (C a), gs, k)

= (case (a, gs)
of (I, (g0, x) :: gs)

=> k (REDEX (RED_I (g0, x)))
| (K, (g0, x) :: (g1, y) :: gs)
=> k (REDEX (RED_K (g1, x, y)))
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| (S, (g0, x) :: (g1, y) :: (g2, z) :: gs)
=> k (REDEX (RED_S (g2, x, y, z)))

| (Y, (g0, x) :: gs)
=> k (REDEX (RED_Y (g0, x)))

| (a, gs)
=> k (NF g))

| search_graph2 (g as ref (A (gl, gr)), gs, k)
= search_graph2 (gl, (g, gr) :: gs,

fn REDEX red
=> k (REDEX red)

| NF gl
=> search_graph2 (gr, [],

fn REDEX red
=> k (REDEX red)

| NF gr
=> k (NF g)))

(* graph -> redex_or_nf *)
fun search2 g = search_graph2 (g, [], fn x => x)

Defunctionalization. We then defunctionalize the continuations to obtain a first-order
representation of the search context. The CPS search function constructs continuations at
three distinct sites:

1. The initial continuation, with no free variables.

2. The continuation when searching to the left, with free variables for the current
graph, its right subgraph and the current continuation.

3. The continuation when searching to the right, with free variables for the current
graph and the current continuation.

We represent defunctionalized continuations by the data type cont with a constructor for
each of the continuations:

datatype cont
= C0
| C1 of graph * graph * cont
| C2 of graph * cont

A defunctionalized continuation is now applied with search_cont3 where the free vari-
ables are supplied by the cont data type:

(* cont -> redex_or_nf -> redex_or_nf *)
fun search_cont3 C0

= (fn x => x)
| search_cont3 (C1 (g, gr, k))
= (fn REDEX red

=> search_cont3 k (REDEX red)
| NF gl
=> search_graph3 (gr, [], C2 (g, k)))

| search_cont3 (C2 (g, k))
= (fn REDEX red

=> search_cont3 k (REDEX red)
| NF gr
=> search_cont3 k (NF g))

(* graph * (graph * graph) list * cont -> redex_or_nf *)
and search_graph3 (g as ref (C a), gs, k)

= (case (a, gs)
of (I, (g0, x) :: gs)
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=> search_cont3 k (REDEX (RED_I (g0, x)))
| (K, (g0, x) :: (g1, y) :: gs)
=> search_cont3 k (REDEX (RED_K (g1, x, y)))

| (S, (g0, x) :: (g1, y) :: (g2, z) :: gs)
=> search_cont3 k (REDEX (RED_S (g2, x, y, z)))

| (Y, (g0, x) :: gs)
=> search_cont3 k (REDEX (RED_Y (g0, x)))

| (a, gs)
=> search_cont3 k (NF g))

| search_graph3 (g as ref (A (gl, gr)), gs, k)
= search_graph3 (gl, (g, gr) :: gs, C1 (g, gr, k))

(* graph -> redex_or_nf *)
fun search3 g = search_graph3 (g, [], C0)

Notice how each case of search_cont3 is defined simply as the corresponding continua-
tion from the CPS search function, replacing the nested continuation in C1 by the defunc-
tionalized continuation C2.

Uncurrying. The defunctionalized search function is in curried form and each call site
is fully applied. We uncurry it to eliminate higher-order functions entirely:

(* cont * redex_or_nf -> redex_or_nf *)
fun search_cont4 (C0, x)

= x
| search_cont4 (C1 (g, gr, k), REDEX red)
= search_cont4 (k, REDEX red)

| search_cont4 (C1 (g, gr, k), NF gl)
= search_graph4 (gr, [], C2 (g, k))

| search_cont4 (C2 (g, k), REDEX red)
= search_cont4 (k, REDEX red)

| search_cont4 (C2 (g, k), NF gr)
= search_cont4 (k, NF g)

(* graph * (graph * graph) list * cont -> redex_or_nf *)
and search_graph4 (g as ref (C a), gs, k)

= (case (a, gs)
of (I, (g0, x) :: gs)

=> search_cont4 (k, REDEX (RED_I (g0, x)))
| (K, (g0, x) :: (g1, y) :: gs)
=> search_cont4 (k, REDEX (RED_K (g1, x, y)))

| (S, (g0, x) :: (g1, y) :: (g2, z) :: gs)
=> search_cont4 (k, REDEX (RED_S (g2, x, y, z)))

| (Y, (g0, x) :: gs)
=> search_cont4 (k, REDEX (RED_Y (g0, x)))

| (a, gs)
=> search_cont4 (k, NF g))

| search_graph4 (g as ref (A (gl, gr)), gs, k)
= search_graph4 (gl, (g, gr) :: gs, C1 (g, gr, k))

(* graph -> redex_or_nf *)
fun search4 g = search_graph4 (g, [], C0)

Simplification. We notice that redexes are final results of the search function:

Property 82 (redexes are final). For an any continuation k : cont and redex red : redex,
search_cont4(k, REDEX red) = REDEX red.
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Proof. By induction on k : cont.

With this property we simplify the search function:

(* cont * graph -> redex_or_nf *)
fun search_cont5 (C0, g)

= NF g
| search_cont5 (C1 (g, gr, k), gl)
= search_graph5 (gr, [], C2 (g, k))

| search_cont5 (C2 (g, k), gr)
= search_cont5 (k, g)

(* graph * (graph * graph) list * cont -> redex_or_nf *)
and search_graph5 (g as ref (C a), gs, k)

= (case (a, gs)
of (I, (g0, x) :: gs)

=> REDEX (RED_I (g0, x))
| (K, (g0, x) :: (g1, y) :: gs)
=> REDEX (RED_K (g1, x, y))

| (S, (g0, x) :: (g1, y) :: (g2, z) :: gs)
=> REDEX (RED_S (g2, x, y, z))

| (Y, (g0, x) :: gs)
=> REDEX (RED_Y (g0, x))

| (a, gs)
=> search_cont5 (k, g))

| search_graph5 (g as ref (A (gl, gr)), gs, k)
= search_graph5 (gl, (g, gr) :: gs, C1 (g, gr, k))

(* graph -> redex_or_nf *)
fun search5 g = search_graph5 (g, [], C0)

Also, at any point of the search, the ancestor list can be constructed from the defunc-
tionalized continuations:

Property 83 (ancestor list from continuation). For any gs : (graph * graph) list
and k : cont, at any point in the search: gs = k2ls(k), given by the total translation on
defunctionalized continuations:

(* cont -> (graph * graph) list *)
fun k2ls (C0) = []
| k2ls (C1 (g, gr, k)) = (g, gr) :: k2ls k
| k2ls (C2 (g, k)) = []

Proof. Holds for initial calls to search_graph5 and is preserved by search_graph5.

Indeed, the ancestor list is used last-in first-out and thus behaves like Turner’s ancestor
stack. With this property we further simplify the search, replacing all uses of the ancestor
list with corresponding uses of the defunctionalized continuations:

(* cont * graph -> redex_or_nf *)
fun search_cont6 (C0, g)

= NF g
| search_cont6 (C1 (g, gr, k), gl)
= search_graph6 (gr, C2 (g, k))

| search_cont6 (C2 (g, k), gr)
= search_cont6 (k, g)

(* graph * cont -> redex_or_nf *)
and search_graph6 (g as ref (C a), k)

= (case (a, k)
of (I, C1 (g0, x, k’))
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=> REDEX (RED_I (g0, x))
| (K, C1 (g0, x, C1 (g1, y, k’)))
=> REDEX (RED_K (g1, x, y))

| (S, C1 (g0, x, C1 (g1, y, C1 (g2, z, k’))))
=> REDEX (RED_S (g2, x, y, z))

| (Y, C1 (g0, x, k’))
=> REDEX (RED_Y (g0, x))

| (a, k)
=> search_cont6 (k, g))

| search_graph6 (g as ref (A (gl, gr)), k)
= search_graph6 (gl, C1 (g, gr, k))

(* graph -> redex_or_nf *)
fun search6 g = search_graph6 (g, C0)

Redex in context. Finally, let us make the search function return not just the redex
of a reducible graph but also the associated context of that redex, represented by the
defunctionalized continuation. Together, the redex and its associated context form a de-
composition of the graph changing the return type of search:

datatype decomposition_or_nf
= DEC of redex * cont
| NF of graph

The context we are interested in is that at the root of the redex, therefore we pair the
redex with k’ and not k:

(* cont * graph -> decomposition_or_nf *)
fun search_cont7 (C0, g)

= NF g
| search_cont7 (C1 (g, gr, k), gl)
= search_graph7 (gr, C2 (g, k))

| search_cont7 (C2 (g, k), gr)
= search_cont7 (k, g)

(* graph * cont -> decomposition_or_nf *)
and search_graph7 (g as ref (C a), k)

= (case (a, k)
of (I, C1 (g0, x, k’))

=> DEC (RED_I (g0, x), k’)
| (K, C1 (g0, x, C1 (g1, y, k’)))
=> DEC (RED_K (g1, x, y), k’)

| (S, C1 (g0, x, C1 (g1, y, C1 (g2, z, k’))))
=> DEC (RED_S (g2, x, y, z), k’)

| (Y, C1 (g0, x, k’))
=> DEC (RED_Y (g0, x), k’)

| (a, k)
=> search_cont7 (k, g))

| search_graph7 (g as ref (A (gl, gr)), k)
= search_graph7 (gl, C1 (g, gr, k))

(* graph -> decomposition_or_nf *)
fun search7 g = search_graph7 (g, C0)

Decomposition. The derived search function implements the decomposition of a re-
ducible graph into a redex and its reduction context. The defunctionalized continuations
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coincide with the reduction contexts in the sense of a reduction semantics. To make this
clear, we rename cont to context and give the constructors descriptive names:

datatype context
= CTX_MT
| CTX_L of graph * graph * context
| CTX_R of graph * graph * context

Here, CTX_L marks a traversal on the left subgraph, where we store current graph (the
ancestor) along with its right subgraph (the sibling). Likewise, we store the current graph
for CTX_R but not the right subgraph since it is not used when deconstructing the con-
text. We could dispense with the right subgraph in CTX_L, since it is indirectly accessible
through the ancestor graph. This context representation and its use is reminiscent of the
zipper technique for traversing data structures in functional programs [115].

To reflect its purpose, we rename search to decompose:

(* context * graph -> decomposition_or_nf *)
fun decompose_context (CTX_MT, g)

= NF g
| decompose_context (CTX_L (g, gr, k), gl)
= decompose_graph (gr, CTX_R (g, gl, k))

| decompose_context (CTX_R (g, gl, k), gr)
= (g := A (gl, gr); decompose_context (k, g))

(* graph * context -> decomposition_or_nf *)
and decompose_graph (g as ref (C a), k)

= (case (a, k)
of (I, CTX_L (g0, x, k’))

=> DEC (RED_I (g0, x), k’)
| (K, CTX_L (g0, x, CTX_L (g1, y, k’)))
=> DEC (RED_K (g1, x, y), k’)

| (S, CTX_L (g0, x, CTX_L (g1, y, CTX_L (g2, z, k’))))
=> DEC (RED_S (g2, x, y, z), k’)

| (Y, CTX_L (g0, x, k’))
=> DEC (RED_Y (g0, x), k’)

| (a, k)
=> decompose_context (k, g))

| decompose_graph (g as ref (A (gl, gr)), k)
= decompose_graph (gl, CTX_L (g, gr, k))

(* graph -> decomposition_or_nf *)
fun decompose g = decompose_graph (g, CTX_MT)

Recall that the search function, and thus this derived decomposition function, is a pure
partial function.

Recomposition. After decomposing a graph and contracting the redex, we need to
recreate the graph. Since contraction actually modifies the graph in place, recomposing
is simply finding the root of the graph:

(* context * graph -> graph *)
fun recompose (CTX_MT, g)

= g
| recompose (CTX_L (g, gr, k), gl)
= recompose (k, g)

| recompose (CTX_R (g, gl, k), gr)
= recompose (k, g)

Recomposition is a pure total function.
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One-step reduction. We implement one-step reduction as the process of decompos-
ing, contracting and recomposing:

(* graph -> graph *)
fun reduce g

= (case decompose g
of NF g’

=> g’
| DEC (red, k)
=> recompose (k, contract (red, k)))

This reduction maps a normal form to itself and a reducible graph to its reduct:

g

◦ ◦

g ′
decompose

$$
contract

//

recompose
::

One-step reduction is an impure partial function, since contraction is effectful and decom-
position can diverge on circular graphs.

Normalization. We implement normalization as the iteration of one-step reduction.
The iteration implements normal-order reduction, which is known to terminate with a
normal form should one exist. This result generalizes to the setting of graphs since normal-
order reduction in Combinatory Logic is hypernormalizing [24]. Normalization is imple-
mented by the following definitions:

(* decomposition_or_nf -> graph *)
fun iterate0 (NF g)

= g
| iterate0 (DEC (red, k))
= iterate0 (decompose (recompose (k, contract (red, k))))

(* graph -> graph *)
fun normalize0 g

= iterate0 (decompose g)

This reduction-based normalization proceeds by enumerating each reduct in the reduction
sequence:

g

◦ ◦

g ′
decompose

$$
contract

//

recompose
::

◦ ◦

g ′′

◦

decompose

$$
contract

//

recompose :: decompose

$$

Normalization is an impure partial function, since contraction is effectful, decomposition
can diverge on circular graphs, and furthermore, the normalization process might diverge
if the graph has no normal form. In other accounts of graph reduction these two forms
of partiality can be distinguished. The partiality of decomposition corresponds to “black
holes” or observable self-reference, whereas the partiality of normalization corresponds
to the usual notion of diverging computation.

This concludes our implementation of the graph rewriting system. For each step, we
have done no more than make explicit the operations that are implicit in the abstract
account – remaining faithful to the calculus à la Barendregt.
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(* graph * context -> decomposition_or_nf *)
fun refocus1 (g, k)

= decompose_graph (g, k)

(* decomposition_or_nf -> graph *)
fun iterate1 (NF g)

= g
| iterate1 (DEC (red, k))
= iterate1 (refocus1 (contract (red, k), k))

(* graph -> graph *)
fun normalize1 g

= iterate1 (refocus1 (g, CTX_MT))

Figure 9.2: Small-step abstract machine obtained by refocusing

9.4 Connecting graph rewriting and graph reduction

With the graph rewriting system of Section 9.3 as our starting point, we successively
submit it to the program transformations of Biernacka and Danvy’s syntactic correspon-
dence [28, 29] lifted to the level of graphs. For an overview of the program transforma-
tions we refer to the work of Danvy et al. [61, 62, 76].

Refocusing. Our first step is to refocus the reduction-based normalization from the
previous section. Refocusing avoids repeated decomposition and recomposition, in effect
deforesting the intermediate results. The result is a reduction-free normalization function
that directly finds the next redex without first navigating to the root of the graph.

g

◦ ◦

g ′
decompose

$$
contract

//

recompose
::

◦ ◦ ◦

g ′′

◦

decompose

$$
contract

//

recompose :: decompose

$$//
refocus

//
refocus

//

As mentioned in the previous section, recomposition is a pure total function and de-
composition is a pure partial function. Thus their composition is a pure partial function.
In particular, so is their deforested composition: side effects are only used for the formal
rewriting axioms of the system and are confined to contract. Thus the refocusing trans-
formation acts only on the ’functional glue’ between each contraction. The deforested
composition we choose is due to Danvy and Nielsen [71], which simply consists in con-
tinuing the decomposition at the contraction site. In other words, refocus1 is an alias
for decompose_graph. The result is an abstract machine iterating contraction and refo-
cusing. More precisely, as displayed in Figure 9.2, it is a small-step abstract machine with
refocus1 (which is pure) and then contract (which is impure) as the transition function
and a ‘driver loop’, iterate1.

Contraction unfolding. We then unfold contract into iterate1, resulting in the func-
tion iterate2, which dispatches on the redex of a decomposition with one case per con-
traction rule:
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(* context * graph -> graph *)
fun refocus_context3 (CTX_MT, g)

= iterate3 (NF g)
| refocus_context3 (CTX_L (g, gr, k), gl)
= refocus_graph3 (gr, CTX_R (g, gl, k))

| refocus_context3 (CTX_R (g, gl, k), gr)
= refocus_context3 (k, g)

(* graph * context -> graph *)
and refocus_graph3 (g as ref (C a), k)

= (case (a, k)
of (I, CTX_L (g0, x, k’))

=> iterate3 (DEC (RED_I (g0, x), k’))
| (K, CTX_L (g0, x, CTX_L (g1, y, k’)))
=> iterate3 (DEC (RED_K (g1, x, y), k’))

| (S, CTX_L (g0, x, CTX_L (g1, y, CTX_L (g2, z, k’))))
=> iterate3 (DEC (RED_S (g2, x, y, z), k’))

| (Y, CTX_L (g0, x, k’))
=> iterate3 (DEC (RED_Y (g0, x), k’))

| (a, k)
=> refocus_context3 (k, g))

| refocus_graph3 (g as ref (A (gl, gr)), k)
= refocus_graph3 (gl, CTX_L (g, gr, k))

(* decomposition_or_nf -> graph *)
and iterate3 (NF g)

= g
| iterate3 (DEC (RED_I (r, x), k))
= refocus_graph3 (rewire (k, x), k)

| iterate3 (DEC (RED_K (r, x, y), k))
= (replace (r, ref (C I), x);

refocus_graph3 (rewire (k, x), k))
| iterate3 (DEC (RED_S (r, x, y, z), k))
= refocus_graph3 (replace (r, ref (A (x, z)), ref (A (y, z))), k)

| iterate3 (DEC (RED_Y (r, x), k))
= refocus_graph3 (replace (r, x, r), k)

(* graph -> graph *)
fun normalize3 g

= refocus_graph3 (g, CTX_MT)

Figure 9.3: Big-step abstract machine obtained by lightweight fusion

(* decomposition_or_nf -> graph *)
fun iterate2 (NF g)

= g
| iterate2 (DEC (RED_I (r, x), k))
= iterate2 (refocus2 (rewire (k, x), k))

| iterate2 (DEC (RED_K (r, x, y), k))
= (replace (r, ref (C I), x);

iterate2 (refocus2 (rewire (k, x), k)))
| iterate2 (DEC (RED_S (r, x, y, z), k))
= iterate2 (refocus2 (replace (r, ref (A (x, z)), ref (A (y, z))), k))

| iterate2 (DEC (RED_Y (r, x), k))
= iterate2 (refocus2 (replace (r, x, r), k))
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(* context * graph -> graph *)
fun refocus_context4 (CTX_MT, g)

= g
| refocus_context4 (CTX_L (g, gr, k), gl)
= refocus_graph4 (gr, CTX_R (g, gl, k))

| refocus_context4 (CTX_R (g, gl, k), gr)
= refocus_context4 (k, g)

(* graph * context -> graph *)
and refocus_graph4 (g as ref (C a), k)

= (case (a, k)
of (I, CTX_L (g0, x, k’))

=> refocus_graph4 (rewire (k’, x), k’)
| (K, CTX_L (g0, x, CTX_L (g1, y, k’)))
=> (replace (g1, ref (C I), x);

refocus_graph4 (rewire (k’, x), k’))
| (S, CTX_L (g0, x, CTX_L (g1, y, CTX_L (g2, z, k’))))
=> refocus_graph4 (replace (g2, ref (A (x, z)),

ref (A (y, z))), k’)
| (Y, CTX_L (g0, x, k’))
=> refocus_graph4 (replace (g0, x, g0), k’)

| (a, k)
=> refocus_context4 (k, g))

| refocus_graph4 (g as ref (A (gl, gr)), k)
= refocus_graph4 (gl, CTX_L (g, gr, k))

(* graph -> graph *)
fun normalize4 g

= refocus_graph4 (g, CTX_MT)

Figure 9.4: Reduction machine obtained by transition compression

Lightweight fusion. By lightweight fusion [67, 155] of iterate2 and refocus2 (as
defined by decompose_graph and decompose_context) we transform the small-step ab-
stract machine into a big-step abstract machine in the sense that the functions iterate3,
refocus_graph3, and refocus_context3 have become transition functions, as shown in
Figure 9.3. Here refocus_graph3 is the composition of iterate2 and decompose_graph,
while refocus_context3 is the composition of iterate2 and decompose_context that
directly calls iterate3 instead of returning to the caller.

Compression of corridor transitions. We proceed to compress the corridor transi-
tions, meaning we inline any call with a uniquely known target. For example, the call
iterate3(NF g) is known to be handled by the first case in iterate3, and we therefore
replace it with g. Completing this process we obtain the code in Figure 9.4, where the
iteration process has been completely inlined.

Notice how similar the machine of Figure 9.4 is to the reduction machine of Section 9.2
in Figure 9.1. The two are in fact the same where:

• refocus_graph4 coincides with unwind where apply has been inlined;

• refocus_context4 coincides with continue;

• the type context coincides with stack where the right graph component in CTX_L
is obtained indirectly via the graph root; and

• rewire coincides with setptr, and the definition of replace has been inlined.
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Thus we have directly derived Turner’s reduction machine from an implementation of
Barendregt et al.’s graph rewriting system, using a series of simple and mechanical pro-
gram transformations. This derivation is significant in two ways: (1) it connects Turner’s
reduction machine and Barendregt et al.’s graph rewriting system, which is new; and
(2) it shows that Biernacka and Danvy’s syntactic correspondence scales to term-graph
rewriting, which is also new.

9.5 Towards graph evaluation

In this section, we briefly investigate whether Reynolds’s functional correspondence [5],
which further connects abstract machines and evaluators for terms, can supply a counter-
part for reduction machines and evaluators for graphs.

The reduction machine of Section 9.2 is not in defunctionalized form [69, 70]. Each of
refocus_context4, refocus_graph4, and our utility procedure rewire deconstructs the
data type of contexts. In order to refunctionalize the machine, there must be only a single
procedure deconstructing the data type of contexts. To obtain a reduction machine that is
in defunctionalized form, we reintroduce the ancestor list we eliminated in Section 9.3.2.
In particular, we represent each context by a list of ancestors, corresponding to a series
of CTX_Ls, and a stack context, corresponding to the occurrence of a CTX_R, to mark a
traversal on a right subgraph. The stack context is defined as:

datatype stack_context
= INIT
| FRAME of graph * graph * (graph * graph) list * stack_context

The translation from contexts into pairs of ancestor lists and stack contexts is:

Property 84 (context to ancestor list and stack contexts). For any k : context,
split k = (gs, sk) where the translation is defined by:

(* context -> (graph * graph) list * stack_context *)
fun split (CTX_MT)

= ([], INIT)
| split (CTX_L (g, gr, k))
= let val (gs, sk) = split k
in ((g, gr) :: gs, sk)
end

| split (CTX_R (g, gl, k))
= let val (gs, sk) = split k
in ([], FRAME (g, gl, gs, sk))
end

This translation has a uniquely determined inverse and thus forms a bijection between the
two context representations. In addition, we must move the rewiring on CTX_R into the
frame case of refocus_context5, since any call to rewire on a right frame will become
a call to rewire on an empty stack followed by a transition to refocus_context5 from
refocus_graph5.3 Using this translation, we replace each occurrence of the context with
its translation:

3Compared to the previous machine, this placement of rewire can result in an additional but harmless assign-
ment that replaces the contents of a cell by itself, e.g., in the case of refocus_graph6(ref (C S), [], k).
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(* (graph * graph) list * graph -> graph *)
fun rewire’ ([], g)

= g
| rewire’ ((r, gr) :: _, gl)
= (r := A (gl, gr); gl)

(* (graph * graph) list * stack_context * graph -> graph *)
fun refocus_context5 ([], INIT, g)

= g
| refocus_context5 ((g, gr) :: gs, k, gl)
= refocus_graph5 (gr, [], FRAME (g, gl, gs, k))

| refocus_context5 ([], FRAME (g, gl, gs, k), gr)
= (g := A (gl, gr); refocus_context5 (gs, k, g))

(* graph * (graph * graph) list * stack_context -> graph *)
and refocus_graph5 (g as ref (C a), gs, k)

= (case (a, gs)
of (I, (g0, x) :: gs’)

=> refocus_graph5 (rewire’ (gs’, x), gs’, k)
| (K, (g0, x) :: (g1, y) :: gs’)
=> (replace (g1, ref (C I), x);

refocus_graph5 (rewire’ (gs’, x), gs’, k))
| (S, (g0, x) :: (g1, y) :: (g2, z) :: gs’)
=> refocus_graph5 (replace (g2, ref (A (x, z)),

ref (A (y, z))), gs’, k)
| (Y, (g0, x) :: gs’)
=> refocus_graph5 (replace (g0, x, g0), gs’, k)

| (a, gs)
=> refocus_context5 (gs, k, g))

| refocus_graph5 (g as ref (A (gl, gr)), gs, k)
= refocus_graph5 (gl, (g, gr) :: gs, k)

(* graph -> graph *)
fun normalize5 g

= refocus_graph5 (g, [], INIT)

This reduction machine is in defunctionalized form and uses frames to manage right
branches in the graph while saving the ancestor list for later normalization. The data
type stack_context together with the function refocus_context5 is the first-order im-
plementation of a higher-order function. Refunctionalizing [69] this machine gives an
evaluator in continuation-passing style where all continuations, i.e., the refunctionalized
stack contexts, are used in a linear fashion as shown in Figure 9.5. The direct-style coun-
terpart of this evaluator is shown in Figure 9.6. This direct-style evaluator handles right
branches at return time by recursively normalizing the right subgraphs in the ancestor
lists. The ML call stack now implicitly encodes the frames used to keep the state at each
right branch.

9.6 Conclusion and perspectives

We have presented the first mechanical inter-derivation of graph rewriting, graph reduc-
tion and graph evaluation for cyclic graphs, extending previous work in the context of
directed acyclic graphs [222]. Based on the restrictive use of side effects, this derivation
adapts Biernacka and Danvy’s syntactic correspondence to the setting of graphs as opposed
to terms. Furthermore, this work illustrates how recent developments in the construction
of a reduction semantics can be applied to graphs as well as to terms [76]. In so doing, we
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(* graph * (graph * graph) list * ((graph * graph) list * graph -> ’a) *)
(* -> ’a *)
fun refocus_graph6 (g as ref (C a), gs, k)

= (case (a, gs)
of (I, (g0, x) :: gs’)

=> refocus_graph6 (rewire’ (gs’, x), gs’, k)
| (K, (g0, x) :: (g1, y) :: gs’)
=> (replace (g1, ref (C I), x);

refocus_graph6 (rewire’ (gs’, x), gs’, k))
| (S, (g0, x) :: (g1, y) :: (g2, z) :: gs’)
=> refocus_graph6 (replace (g2, ref (A (x, z)),

ref (A (y, z))), gs’, k)
| (Y, (g0, x) :: gs’)
=> refocus_graph6 (replace (g0, x, g0), gs’, k)

| (a, gs)
=> k (gs, g))

| refocus_graph6 (g as ref (A (gl, gr)), gs, k)
= refocus_graph6 (gl, (g, gr) :: gs, k)

(* graph -> graph *)
fun normalize6 g

= let fun init ([], g) = g
| init ((g, gr) :: gs, gl)
= let fun frame (g0, gs0, k) ([], gr’)

= (g := A (gl, gr’); k (gs0, g0))
| frame (g0, gs0, k) ((g, gr) :: gs, gl)
= refocus_graph6 (gr, [], frame (g, gs,

frame (g0, gs0, k)))
in refocus_graph6 (gr, [], frame (g, gs, init))
end

in refocus_graph6 (g, [], init)
end

Figure 9.5: Graph evaluator in continuation-passing style

have connected the graph rewriting systems of Barendregt et al. to the graph reduction
machines of Turner.

We have considered a simple setting: Combinatory Logic with just the basic combina-
tors S, K, I and Y. However, in our experience, the derivation techniques scale and have
subsequently been successfully applied to both more formal and more involved graph
rewriting systems, e.g., equational theories for graph rewriting [73], the call-by-need λ-
calculus [77], and the spineless tagless G-machine [167]. Combined, these works shows
how different reduction machines can be derived from different graph rewriting systems
and it is our experience that the derivation techniques help in understanding their dif-
ferences. Furthermore, the techniques provide the possibility of incrementally refining
either of the semantic artifacts such that the refinements are reflected constructively in
the derived semantic counterparts.

Acknowledgments. Thanks are due to the anonymous HOSC reviewers and to Dennis
Decker Jensen and the anonymous TFP’09 reviewers for their comments on earlier ver-
sions of this article. I am also grateful to Olivier Danvy for his supervision and for his
course on functional programming at Aarhus University, where this work originates.
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9.6. Conclusion and perspectives

(* graph * (graph * graph) list -> (graph * graph) list * graph *)
fun refocus_graph7 (g as ref (C a), gs)

= (case (a, gs)
of (I, (g0, x) :: gs’)

=> refocus_graph7 (rewire’ (gs’, x), gs’)
| (K, (g0, x) :: (g1, y) :: gs’)
=> (replace (g1, ref (C I), x);

refocus_graph7 (rewire’ (gs’, x), gs’))
| (S, (g0, x) :: (g1, y) :: (g2, z) :: gs’)
=> refocus_graph7 (replace (g2, ref (A (x, z)),

ref (A (y, z))), gs’)
| (Y, (g0, x) :: gs’)
=> refocus_graph7 (replace (g0, x, g0), gs’)

| (a, gs)
=> (gs, g))

| refocus_graph7 (g as ref (A (gl, gr)), gs)
= refocus_graph7 (gl, (g, gr) :: gs)

(* graph -> graph *)
fun normalize7 g

= let fun init ([], g) = g
| init ((g, gr) :: gs, gl)
= let fun frame (g0, gs0, ([], gr))

= (g := A (gl, gr); (gs0, g0))
| frame (g0, gs0, ((g, gr) :: gs, gl))
= frame (g0, gs0,

frame (g, gs, refocus_graph7 (gr, [])))
in init (frame (g, gs, refocus_graph7 (gr, [])))
end

in init (refocus_graph7 (g, []))
end

Figure 9.6: Graph evaluator in direct style
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Chapter 10

Three syntactic theories

for combinatory graph reduction

This chapter will appear in [74]: Olivier Danvy and Ian Zerny. Three syntactic theories
for combinatory graph reduction. ACM Transactions on Computational Logic, 2013.

An earlier version appeared in [73]: Olivier Danvy and Ian Zerny. Three syntactic
theories for combinatory graph reduction. In María Alpuente, editor, Logic Based Pro-
gram Synthesis and Transformation, 20th International Symposium, LOPSTR 2010, revised
selected papers, number 6564 in Lecture Notes in Computer Science, pages 1–20, Hagen-
berg, Austria, July 2010. Springer. Invited talk.

Abstract

We present a purely syntactic theory of graph reduction for the canonical combina-
tors S, K, and I, where graph vertices are represented with evaluation contexts and let
expressions. We express this first syntactic theory as a storeless reduction semantics of
combinatory terms. We then factor out the introduction of let expressions to denote
as many graph vertices as possible upfront instead of on demand. The factored terms
can be interpreted as term graphs in the sense of Barendregt et al. We express this
second syntactic theory, which we prove equivalent to the first, as a storeless reduction
semantics of combinatory term graphs. We then recast let bindings as bindings in a
global store, thus shifting, in Strachey’s words, from denotable entities to storable en-
tities. The store-based terms can still be interpreted as term graphs. We express this
third syntactic theory, which we prove equivalent to the second, as a store-based reduc-
tion semantics of combinatory term graphs. We then refocus this store-based reduction
semantics into a store-based abstract machine. The architecture of this store-based
abstract machine coincides with that of Turner’s original reduction machine. The three
syntactic theories presented here therefore properly account for combinatory graph
reduction As We Know It.

These three syntactic theories scale to handling the Y combinator. This article there-
fore illustrates the scientific consensus of theoreticians and implementors about graph
reduction: it is the same combinatory elephant.
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10. Three syntactic theories for combinatory graph reduction

10.1 Introduction

In the mid-1990s Ariola, Felleisen, Maraist, Odersky, and Wadler [15] presented a purely
syntactic theory for the call-by-need λ-calculus. In retrospect, their key insight was to syn-
tactically represent ‘def-use chains’ for identifiers with evaluation contexts. For example,
here is one of their contraction rules:

(λx .E[x]) v→ (λx .E[v]) v

In the left-hand side, an identifier, x , occurs (i.e., is ‘used’) in the eye of an evaluation con-
text, E: its denotation is therefore needed.1 This identifier is declared (i.e., is ‘defined’) in
a λ-abstraction that is applied to a (syntactic) value v. In the right-hand side, v hygien-
ically replaces x in the eye of E. There may be other occurrences of x in E: if another
such one is needed later in the reduction sequence, this contraction rule will intervene
again—it implements memoization.

In this article, we take a next logical step and present a purely syntactic theory of graph
reduction for the canonical combinators S, K and I:

S f g x = f x (g x)
K x y = x

I x = x

Our key technique is to syntactically represent def-use chains for graph vertices using
evaluation contexts and let expressions declaring unique references. For example, the
traditional specification of K as K t1 t0 = t1, for any terms t0 and t1, does not account
for sharing of subterms before and after contraction. In contrast, our specification does
account for sharing, algebraically:

let x2 = K in E2[let x1 = x2 t1 in
E1[let x0 = x1 t0 in

E0[x0]]]

→ let x2 = K in E2[let x3 = t1 in
let x1 = x2 x3 in
E1[let x0 = x3 in

E0[x0]]]
where x3 is fresh

This contraction rule should be read inside-out:

• In the left-hand side, i.e., in the redex, a reference, x0, occurs in the eye of an
evaluation context: its denotation is therefore needed. The definiens of x0 is the
application of a second reference, x1, to a term t0: the denotation of x1 is therefore
also needed. The definiens of x1 is the application of a third reference, x2, to a
term t1: the denotation of x2 is therefore also needed. The definiens of x2 is the K
combinator.

• In the right-hand side, i.e., in the contractum, a fresh (and thus unique) reference,
x3, is introduced to denote t1: it replaces the application of x1 to t0. Reducing the
K combinator is thus achieved (1) by creating a fresh reference to t1 to share any
subsequent reduction in t1,2 and (2) by replacing the reference to the application
x1 t0 by x3.

1The notation E[t] stands for a term that decomposes into a reduction context, E, and a subterm, t.
2References ensure sharing of subterms: they are uniquely defined, but they can have many uses. References

can be freely duplicated, but what they refer to, i.e., their denotation, is not duplicated and is thus shared.
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There may be other occurrences of x0 in E0: if another such one is needed later in the
reduction sequence, this contraction rule for K will not intervene again—its result has
been memoized.

In Section 10.2, we fully specify our syntactic theory of combinatory graph reduction as
a reduction semantics, and we then apply the first author’s programme [61, 62] to derive
the first storeless abstract machine for combinatory graph reduction, in a way similar to
what we recently did for the call-by-need λ-calculus [77].

Our syntactic theory introduces let expressions for applications on demand. In Sec-
tion 10.3, we preprocess source terms by introducing let expressions upfront for all source
applications, and we present the corresponding reduction semantics and storeless abstract
machine. We show that the preprocessed terms can be interpreted as Barendregt et al.’s
term graphs [24].

In Section 10.4, we map the explicit let bindings for graph vertices to implicit bindings
in a global store. Still, terms can be interpreted as term graphs. Again, we present the
corresponding store-based reduction semantics and store-based abstract machine. This
store-based abstract machine essentially coincides with Turner’s original graph-reduction
machine [209]. This coincidence provides an independent, objective bridge between the
modern theory of combinatory graph reduction with term graphs and its classical compu-
tational practice with reduction machines.

Prerequisites and notations We expect an elementary awareness of the S, K and I
combinators and how combinatory terms can be reduced to head normal form, either in
principle (as a formal property in Combinatory Logic [22]) or in practice (as a stack-based
graph-reduction machine [159, 209]). We also assume a basic familiarity with the format
of reduction semantics and abstract machines as can be gathered, e.g., in the first author’s
lecture notes at AFP 2008 [61]; and with the concept of term graphs, as pedagogically
presented in Blom’s PhD dissertation [33]. In particular, we use the terms ‘reduction
context’ and ‘evaluation context’ interchangeably.

For a notion of reduction R defined with a set of contraction rules, we define the
contraction of a redex r into a contractum t as (r, t) ∈ R . We use→R for the compatible
closure of R , and�R for the transitive-reflexive closure of→R . A term t is in R-normal
form (R-nf) if t does not contain a redex of R .

Pictorial overview
terms graphs store

reduction semantics Section 10.2.1 Section 10.3.1 Section 10.4.1
abstract machine Section 10.2.2 Section 10.3.2 Section 10.4.2

compressed abstract machine Section 10.2.3 Section 10.3.3 Section 10.4.3

10.2 Three inter-derivable semantic artifacts

for storeless combinatory graph reduction

Our starting point is the following grammar of combinatory terms:

t ::= I | K | S | t t

So a combinatory term is a combinator or a combination, i.e., the application of a term to
another term.
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10. Three syntactic theories for combinatory graph reduction

We embed this grammar into a grammar of terms where sub-terms can be referred to
through let expressions and where a program p is a term t denoted by a reference whose
denotation is needed:

t ::= I | K | S | t t | let x = t in t | x
p ::= let x = t in x

In this grammar, a term is a combinatory term (i.e., a combinator or a combination),
the declaration of a reference to a term in another term, or the occurrence of a declared
reference. Initially, a program contains only one let expression: the outer one, whose
definiens is a let-less combinatory term.

In our experience, however, there is a better fit for the contraction rules, namely the
following sub-grammar where a denotable term is an original combinatory term or a term
that generalizes the original program into declarations nested around a declared refer-
ence:

p ::= let x = d in x
d ::= I | K | S | d d | t
t ::= let x = d in t | x

This grammar of terms excludes terms with let expressions whose body is a combinator
or a combination. Again, initially, a program contains only one let expression.

At this point, it would be tempting to define reduction contexts to reflect how refer-
ences are needed in the reduction process:

Reduction Context 3 E ::= [ ] | let x = d in E | let x = E d in E[x]

The constructor “let x = d in E” accounts for the recursive search for the innermost refer-
ence in a term. The constructor “let x = E d in E[x]” accounts for the need of intermediate
references.

In our experience, however, there is a better grammatical fit for contexts, namely one
which separates the search for the innermost reference in a term and the subsequent
construction that links needed references to their declaration, i.e., usage to definition.
The former gives rise to delimited reduction contexts and the latter to def-use chains:

Reduction Context 3 E ::= [ ] | let x = d in E
Def-use Chain 3 C ::= [ ] | let x = [ ] d in E[C[x]]

We are not alone to appreciate this grammatical fit: in their abstract machine for the call-
by-need λ-calculus [44], Chang et al. also segment their control stack according to the
current λ-binders to connect uses and definitions.

10.2.1 A reduction semantics

A reduction semantics is a small-step operational semantics [171] with an explicit rep-
resentation of the reduction context. Its components are an abstract syntax, a grammar
of reduction contexts, a collection of axioms (contraction rules) to map a redex into a
contractum, a decomposition function mapping a value term into itself and a non-value
term into a redex and its reduction context, and a recomposition function mapping a con-
tractum and a reduction context into a reduct. With these components, one can define a
one-step reduction function enumerating the reduction sequence. This reduction function
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(1) decomposes a non-value term into a redex and its reduction context, (2) contracts this
redex into a contractum,3 and (3) recomposes this contractum and this reduction context
into the next reduct in the reduction sequence. Let us specify each of these components:
abstract syntax and reduction contexts, axioms, recomposition, and decomposition.

Here is the full definition of the syntax:

Program 3 p ::= let x = d in x
Denotable Term 3 d ::= I | K | S | d d | t

Term 3 t ::= let x = d in t | x
Reduction Context 3 E ::= [ ] | let x = d in E

Def-use Chain 3 C ::= [ ] | let x = [ ] d in E[C[x]]

Initially, a program contains only one let expression: the outer one. Reduction contexts
reflect the recursive search for the innermost reference in a term. While returning from
this search, def-use chains are constructed to connect each reference whose denotation is
needed with its declaration site. We abbreviate let x = [ ] d in E[C[x]] as (x , d, E) ·C and
we write Πi=n

0 (x i , di , Ei) · C as short hand for (xn, dn, En) · . . .· (x0, d0, E0) · C, and |C| for
the length of C, so that |Πi=n

0 (x i , di , Ei) · [ ]|= n+ 1.

Axioms (i.e., contraction rules) Figure 10.1 displays the axioms. Each of (I), (K) and
(S) is much as (K) was described in Section 10.1, with the addition of the inner def-use
chain: it carries out a particular rearrangement while preserving sharing through common
references.4

In the left-hand side of (comb), a reference, x0, occurs in the eye of the current def-
use chain, C: its denotation is therefore needed. Its definiens is a combination of two
denotable terms, d0 and d1. In the right-hand side, a fresh reference, x1, is introduced to
denote d0. This fresh reference extends the current def-use chain for d0, thereby ensuring
that any subsequent reduction in d0 is shared.5 This specific choice of d0 ensures that
any redex found in a subsequent search will be on the left of this combination, thereby
enforcing left-most reduction.

The axiom (assoc) is used to flatten let expressions,6 and the axiom (ref) to resolve
indirect references.

The corresponding notion of reduction is T :

T = (I)∪ (K)∪ (S)∪ (comb)∪ (assoc)∪ (ref)

Reduction strategy The reduction strategy is left-most outermost: the def-use chains
force us to only consider the outermost combination, and (comb) ensures that this outer-
most combination is the left-most one.

3The contraction rules may be context-sensitive in that they map a redex and its context into a contractum and
a new context. In that case, the contractum is recomposed into the new context.

4On the right-hand side of (I), (K) and (S), we have kept E0[C[x0]] in order to highlight each particular
rearrangement. It would be simple to “optimize” these right-hand sides by taking advantage of [a subsequent use
of] (ref) and (comb), so that, e.g., the right-hand side of (K) contains E0[C[x3]] instead.

5 If d0 is already a reference, it is already part of a def-use chain and no contraction need take place:
let x0 = x d1 in E0[C[x0]] is not a redex.

6Let expressions are themselves denotable terms and must be reassociated in search of a def-use chain. When
reassociating, there is no need for the condition “x1 does not occur free in E0” since each reference is unique.
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(I) let x1 = I in
E1[let x0 = x1 d0 in

E0[C[x0]]]

→ let x1 = I in
E1[let x0 = d0 in

E0[C[x0]]]

(K) let x2 = K in
E2[let x1 = x2 d1 in

E1[let x0 = x1 d0 in
E0[C[x0]]]]

→ let x2 = K in
E2[let x3 = d1 in

let x1 = x2 x3 in
E1[let x0 = x3 in

E0[C[x0]]]]
where x3 is fresh

(S) let x3 = S in
E3[let x2 = x3 d2 in

E2[let x1 = x2 d1 in
E1[let x0 = x1 d0 in

E0[C[x0]]]]]

→ let x3 = S in
E3[let x4 = d2 in

let x2 = x3 x4 in
E2[let x5 = d1 in

let x1 = x2 x5 in
E1[let x6 = d0 in

let x0 = (x4 x6) (x5 x6) in
E0[C[x0]]]]]

where x4, x5 and x6 are fresh

(comb) let x0 = d0 d1 in
E0[C[x0]]

→ let x1 = d0 in
let x0 = x1 d1 in
E0[C[x0]]
where d0 is not a reference

and x1 is fresh

(assoc) let x0 = (let x1 = d1 in t0) in
E0[C[x0]]

→ let x1 = d1 in
let x0 = t0 in
E0[C[x0]]

(ref) let x0 = x1 in E0[C[x0]] → let x0 = x1 in E0[C[x1]]

Figure 10.1: Reduction semantics for combinatory graph reduction: axioms

Recompositions Figure 10.2 displays the recompositions of a reduction context around
a term, and of a def-use chain around a reference:

Definition 85 (inside-out recomposition of contexts around terms). A context E is re-
composed around a term t into a term t ′ = E[t] whenever 〈E, t〉io ⇑rec t ′ holds. (See
Figure 10.2 and also Footnote 1 for the notation E[t].)

Definition 86 (outside-in recomposition of contexts around terms). A context E is re-
composed around a term t into a term t ′ = E[t] whenever 〈E, t〉oi ⇑rec t ′ holds. (See
Figure 10.2.)

Outside-in recomposition of contexts is used as an auxiliary judgment in the recompo-
sition of def-use chains:
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Inside-out recomposition of a reduction context around a term:

〈[ ], t〉io ⇑rec t
〈E, let x = d in t〉io ⇑rec t ′

〈let x = d in E, t〉io ⇑rec t ′

Outside-in recomposition of a reduction context around a term:

〈[ ], t〉oi ⇑rec t
〈E, t〉oi ⇑rec t ′

〈let x = d in E, t〉oi ⇑rec let x = d in t ′

Recomposition of a def-use chain around a reference:

〈[ ], x〉chain ⇑rec x
〈C, x ′〉chain ⇑rec t 〈E, t〉oi ⇑rec t ′

〈let x ′ = [ ] d in E[C[x ′]], x〉chain ⇑rec let x ′ = x d in t ′

Figure 10.2: Reduction semantics for combinatory graph reduction: recompositions

Definition 87 (recomposition of def-use chains around references). A def-use chain C is
recomposed around a reference x into a term t = C[x] whenever 〈C, x〉chain ⇑rec t holds.7

(See Figure 10.2.)

Decomposition Decomposition implements the reduction strategy by searching for a
redex and its reduction context in a term. Figure 10.3 displays this search as a state-
transition system with three states:

term-state 〈t, E〉term

cont-state 〈E, t〉cont and 〈E, (x , E, C)〉cont

den-state 〈x , d, E, C, E〉den

term-transitions Given a term, we recursively dive into the bodies of its nested let ex-
pressions until its innermost reference x , which is therefore needed.

cont-transitions over t Given a context, we dispatch on its top component, if there is
one.

cont-transitions over (x , E, C) Having found a reference x that is needed, we backtrack
in search of its declaration, incrementally constructing a def-use chain for it.8 If we
do not find any redex, the term is in T -normal form.

den-transitions Having found the declaration of the reference that was needed, we check
whether we have also found a redex and thus a decomposition. Otherwise, a com-
binator is not fully applied or a new reference is needed. We then resume a cont-
transition, either on our way to a T -normal form or extending the current def-use
chain for this new reference.

7As already pointed out in Footnote 1, the notation C[x] stands for a term that decomposes into a def-use
chain, C, and a reference, x .

8There is no transition for 〈[ ], (x0, E0, C)〉cont because all references are declared.
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〈let x = d in t, E〉term ↓dec 〈t, let x = d in E〉term
〈x , E〉term ↓dec 〈E, (x , [ ], [ ])〉cont

〈[ ], t〉cont ↓dec 〈t〉nf
〈let x = d in E, t〉cont ↓dec 〈E, let x = d in t〉cont

〈let x0 = d in E, (x0, E0, C)〉cont ↓dec 〈x0, d, E0, C, E〉den
〈let x = d in E, (x0, E0, C)〉cont ↓dec 〈E, (x0, let x = d in E0, C)〉cont

where x 6= x0

〈x1, I , E1, Πi=0
0 (x i , di , Ei) · C, E〉den ↓dec 〈E, let x1 = I in E1[let x0 = x1 d0 in

E0[C[x0]]]〉dec
where 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

〈x2, K , E2, Πi=1
0 (x i , di , Ei) · C, E〉den ↓dec 〈E, let x2 = K in E2[let x1 = x2 d1 in

E1[let x0 = x1 d0 in
E0[C[x0]]]]〉dec

where 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

〈x3, S, E3, Πi=2
0 (x i , di , Ei) · C, E〉den ↓dec 〈E, let x3 = S in E3[let x2 = x3 d2 in

E2[let x1 = x2 d1 in
E1[let x0 = x1 d0 in

E0[C[x0]]]]]〉dec
where 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

〈x0, d0, E0, C, E〉den ↓dec 〈E, let x0 = d0 in E0[C[x0]]〉cont
where d0 = I and |C|< 1

or d0 = K and |C|< 2
or d0 = S and |C|< 3

and 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

〈x0, x1 d0, E0, C, E〉den ↓dec 〈E, (x1, [ ], (x0, d0, E0) · C)〉cont
〈x0, d0 d1, E0, C, E〉den ↓dec 〈E, let x0 = d0 d1 in E0[C[x0]]〉dec

where d0 is not a reference
and 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

〈x0, let x1 = d1 in t0, E0, C, E〉den ↓dec 〈E, let x0 = (let x1 = d1 in t0) in E0[C[x0]]〉dec
where 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

〈x0, x1, E0, C, E〉den ↓dec 〈E, let x0 = x1 in E0[C[x0]]〉dec
where 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

Figure 10.3: Reduction semantics for combinatory graph reduction: decomposition
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Definition 88 (decomposition). The decomposition relation, ↓∗dec, is the transitive clo-
sure of ↓dec. A term t = E[r] is decomposed into a redex r and a context E whenever
〈t, [ ]〉term ↓∗dec 〈r, E〉dec holds. (See Figure 10.3.)

The transition system implementing decomposition can be seen as a big-step abstract ma-
chine [67]. As repeatedly pointed out in the first author’s lecture notes at AFP 2008 [61],
such a big-step abstract machine is often in defunctionalized form—as is the case here.
In the present case, it can be refunctionalized into a function over source terms which
is compositional. Ergo, it is expressible as a catamorphism over source terms. Further,
the parameters of this catamorphism are total functions. Therefore, the decomposition
function is total. It yields either the given term if this term is in T -normal form, or its
left-most outermost redex and the corresponding reduction context. Formally:

Property 89 (vacuous decomposition of normal forms). For any t ∈ T -nf,

〈t, [ ]〉term ↓∗dec 〈t〉nf

Property 90 (unique decomposition of non-normal forms). For any t 6∈ T -nf,

〈t, [ ]〉term ↓∗dec 〈E, r〉dec

where r is the left-most outermost redex of t and E is its corresponding reduction context.

The referee pointed out that termination can also be argued with an ordering on ab-
stract states:

• In any transition from 〈t, E〉term to 〈t ′, E′〉term, t ′ is a proper part of t.

• In any transition from 〈t, E〉term to 〈E, t〉cont, E is unchanged.

• In any transition from 〈E, t〉cont to 〈E′, t ′〉cont, E′ is a proper part of E.

• In any transition from 〈E, (x0, E0, C)〉cont to 〈x0, _, E0, C, E′〉den, E′ is a proper part
of E.

• In any transition from 〈E, (x0, E0, C)〉cont to 〈E′, (x0, E0, C)〉cont, E′ is a proper part
of E.

• In any transition from 〈x0, d, E0, C, E〉den, to 〈E, t〉cont, E is unchanged.

• In any transition from 〈x0, d, E0, C, E〉den, to 〈E, (x1, E1, C′)〉cont, E is unchanged.

In any two consecutive transitions, the term or the context decreases and therefore de-
composition terminates.

One-step reduction Performing one contraction in a term that is not in T -normal
form proceeds as follows: (1) locating a redex and its context through a number of de-
composition steps according to the reduction strategy, (2) contracting this redex, and (3)
recomposing the resulting contractum into the context:
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10. Three syntactic theories for combinatory graph reduction

Definition 91 (standard one-step reduction). For any t,

t 7→T t ′′ iff







〈t, [ ]〉term ↓∗dec 〈E, r〉dec

(r, t ′) ∈ T
〈E, t ′〉io ⇑rec t ′′

The standard one-step reduction is not the compatible closure of T . Indeed, the standard
one-step reduction is closed over evaluation contexts, whereas the compatible closure of
T is closed over arbitrary contexts (i.e., terms with a hole).

Reduction-based evaluation The standard reduction-based evaluation is defined as
the iteration of the standard one-step reduction. It thus enumerates the standard reduc-
tion sequence of any given program:

Definition 92 (standard reduction-based evaluation). Standard reduction-based evalua-
tion, 7→∗T , is the transitive-reflexive closure of standard one-step reduction, 7→T .

Most of the time, decomposition and recomposition(s) are kept implicit in published re-
duction semantics. We however observe that what was kept implicit is then progressively
revealed as, e.g., one constructs an abstract machine to implement evaluation [99]. We
believe that it is better to completely spell out reduction semantics upfront, because one is
then in position to systematically calculate the corresponding abstract machines [28, 61],
as illustrated in the next section for syntactic graph reduction. In our experience, this sys-
tematic calculation is not only generally applicable but it yields simpler abstract machines
than the ones constructed by hand.

10.2.2 A storeless abstract machine

Reduction-based evaluation, as defined in Section 10.2.1, is inefficient because of its re-
peated decompositions and recompositions that construct each successive term in a re-
duction sequence. Refocusing [71] deforests these intermediate terms, and is defined
very simply as continuing decomposition with the contractum and its reduction context.
The reduction semantics of Section 10.2.1 satisfies the formal requirements for refocus-
ing [71] and so its reduction-based evaluation can be simplified into a reduction-free eval-
uation that does not construct each successive term in a reduction sequence. Reflecting
the structure of decomposition of Figure 10.3, the result is an abstract machine displayed
in Figure 10.4:

term-transitions The term-transitions are the same as for decomposition.

cont-transitions The cont-transitions are the same as for decomposition.

den-transitions The den-transitions are the same as for decomposition.

dec-transitions Having found a redex we contract it and decompose the contractum in
the current context.

After an initial decomposition of the input term in the empty context, reduction-free eval-
uation is thus defined as the iteration of contraction and decomposition:
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10.2. Three inter-derivable semantic artifacts

→step ⊃ ↓dec

〈E, let x1 = I in
E1[let x0 = x1 d0 in

E0[C[x0]]]〉dec

→step 〈let x1 = I in
E1[let x0 = d0 in

E0[C[x0]]], E〉term

〈E, let x2 = K in
E2[let x1 = x2 d1 in

E1[let x0 = x1 d0 in
E0[C[x0]]]]〉dec

→step 〈let x2 = K in
E2[let x3 = d1 in

let x1 = x2 x3 in
E1[let x0 = x3 in

E0[C[x0]]]], E〉term
where x3 is fresh

〈E, let x3 = S in
E3[let x2 = x3 d2 in

E2[let x1 = x2 d1 in
E1[let x0 = x1 d0 in

E0[C[x0]]]]]〉dec

→step 〈let x3 = S in
E3[let x4 = d2 in

let x2 = x3 x4 in
E2[let x5 = d1 in

let x1 = x2 x5 in
E1[let x6 = d0 in

let x0 = (x4 x6) (x5 x6) in
E0[C[x0]]]]], E〉term

where x4, x5 and x6 are fresh

〈E, let x0 = d0 d1 in
E0[C[x0]]〉dec

→step 〈let x1 = d0 in
let x0 = x1 d1 in
E0[C[x0]], E〉term
where d0 is not a reference

and x1 is fresh

〈E, let x0 = (let x1 = d1 in t0) in
E0[C[x0]]〉dec

→step 〈let x1 = d1 in
let x0 = t0 in
E0[C[x0]], E〉term

〈E, let x0 = x1 in E0[C[x0]]〉dec →step 〈let x0 = x1 in E0[C[x1]], E〉term

Figure 10.4: Storeless abstract machine for combinatory graph reduction

Definition 93 (standard reduction-free evaluation). Standard reduction-free evaluation,
→∗step, is the transitive closure of→step. (See Figure 10.4.)

Proposition 94 (full correctness of the storeless abstract machine). For any program p,

p 7→∗T t ∧ t ∈ T -nf ⇔ 〈p, [ ]〉term→∗step 〈t〉nf

Proof. Correctness of refocusing.

10.2.3 A storeless abstract machine after transition compression

In the abstract machine of Section 10.2.2, some of the transitions yield a configura-
tion for which there unconditionally exists another transition: all transitions to a term-
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10. Three syntactic theories for combinatory graph reduction

configuration with a known term, all transitions to a cont-configuration with a known
context, and all transitions to a dec-configuration with a known redex (i.e., all transitions
to dec). These so-called “corridor transitions” [36] from one configuration to another
can be hereditarily compressed so that the first configuration yields the last one in one
transition.

Other transition compressions are determined by the structure of terms, evaluation
contexts, and def-use chains. They collapse several consecutive steps into one. We state
these properties using the following two recompositions of evaluation contexts:

Definition 95 (inside-out recomposition of contexts around contexts). A context that was
constructed inside out (resp. outside in) is composed with a context that was constructed
outside in (resp. inside out) as follows:

[ ] ◦io E = E
(let x = d in E′) ◦io E = E′ ◦io let x = d in E

The resulting context is constructed outside in (resp. inside out).

Definition 96 (outside-in recomposition of contexts around contexts). Two contexts that
were constructed outside in (resp. inside out) are composed into an outside-in (resp.
inside-out) context as follows:

[ ] ◦oi E = E
(let x = d in E′) ◦oi E = let x = d in (E′ ◦oi E)

This composition function is associative.

Property 97 (restoring outside-in evaluation contexts). For any t, E and E1 such that
〈E1, t〉oi ⇑rec E1[t],

〈E1[t], E〉term →∗step 〈t, E1 ◦io E〉term

Property 98 (restoring def-use chains). For any x , C and E
such that 〈C, x〉chain ⇑rec C[x],

〈C[x], E〉term →∗step 〈E, (x , [ ], C)〉cont

Property 99 (continuing search for references). For any x , C, E, E1 and E2 where x is
not bound in E1,

〈E1 ◦oi E, (x , E2, C)〉cont →∗step 〈E, (x , E1 ◦io E2, C)〉cont

Corollary 100 (restoring evaluation contexts and def-use chains). For any x, C, E and E1
such that 〈C, x〉chain ⇑rec C[x] and 〈E1, C[x]〉oi ⇑rec E1[C[x]],

〈E1[C[x]], E〉term →∗step 〈E, (x , E1, C)〉cont

The resulting machine is displayed in Figure 10.5.

Definition 101 (standard reduction-free evaluation). Standard reduction-free evalua-
tion,→∗step, is the transitive closure of→step. (See Figure 10.5.)

Proposition 102 (full correctness of the storeless abstract machine after transition com-
pression). For any program p,

p 7→∗T t ∧ t ∈ T -nf ⇔ 〈p, [ ]〉term→∗step 〈t〉nf

Proof. Property 97, Property 98, Property 99 and Corollary 100.
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10. Three syntactic theories for combinatory graph reduction

10.2.4 Summary and conclusion

Starting from a completely spelled-out reduction semantics for combinatory terms with
sharing, we have mechanically derived a storeless abstract machine. These two semantic
artifacts share the same syntactic representations and precisely follow the same reduction
strategy.

10.3 Preprocessing combinatory terms into term graphs

In Section 10.2, references are declared on demand in the reduction sequence. In this
section, we factor out all possible such declarations for combinations into a preprocessing
phase.

We start by revising the (comb) and (S) axioms:

(comb′) let x = d0 d1 in E[C[x]] → let x0 = d0 in
let x1 = d1 in
let x = x0 x1 in E[C[x]]
where d0 is not a reference
and x0 and x1 are fresh

In contrast to the (comb) axiom, the revised axiom (comb′) declares references for both
sides of a combination. Unlike in Section 10.2, there can thus be references to denotable
terms whose denotation is not needed. In the same spirit, we revise the (S) axiom so that
it declares references to both sides of any combination in the contractum:

(S′) let x3 = S in
E3[let x2 = x3 d2 in

E2[let x1 = x2 d1 in
E1[let x0 = x1 d0 in

E0[C[x0]]]]]

→ let x3 = S in
E3[let x4 = d2 in

let x2 = x3 x4 in
E2[let x5 = d1 in

let x1 = x2 x5 in
E1[let x6 = d0 in

let x7 = x4 x6 in
let x8 = x5 x6 in
let x0 = x7 x8 in
E0[C[x0]]]]]

where x4, x5, x6, x7 and x8 are fresh

The corresponding notion of reduction is T ′:

T ′ = (I)∪ (K)∪ (S′)∪ (comb′)∪ (assoc)∪ (ref)

We split T ′ into two: a compile-time notion of reduction C and a run-time notion of
reduction R:

C = (assoc)∪ (comb′)

R = (I)∪ (K)∪ (S′)∪ (ref)
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T ′ (and thus each of C and R) contains only left-linear axioms and no critical pairs: it
is orthogonal and thus confluent [125]. Furthermore, C is strongly normalizing.

The C -normal forms are contained within the following sub-grammar of terms:

Denotable Term 3 d ::= I | K | S | x x | x
Term 3 t ::= let x = d in t | x

In this grammar, only combinations of references are admitted and furthermore let expres-
sions are completely flattened, in a way reminiscent of monadic normal forms [111, 112].

Proposition 103 (preprocessing). If p�T ′ t ∧ t ∈ T ′-nf
then ∃t ′ ∈ C -nf . p�C t ′�R t.

Proof. Strong normalization of C ensures the existence of t ′. Confluence of T ′ gives
t ′�T ′ t. R is closed over C -nf. Thus, only R is needed in the reduction t ′�R t.

We observe that a preprocessed term is a syntactic representation of a graph where ev-
ery denotable term has been declared with a reference. Indeed it is straightforward to
interpret preprocessed terms as term graphs:

Definition 104 (term graphs [24, Definition 4.2.6]). A term graph is a tuple (N , lab, succ, r)
over a set of function symbols F where

• N is a set of unique node identifiers;

• lab : N → F is a labeling function mapping nodes to function symbols;

• succ : N → N n is a successor function mapping nodes to an n-tuple of successor
nodes for some natural number n; and

• r ∈ N is the root of the term graph.

Two term graphs are equivalent, g1 ≡ g2, if they are componentwise equivalent. A term
graph is a sub-graph of another term graph, g1 v g2, if N1 ⊆ N2 and

∀n ∈ N1 . lab1(n) = lab2(n) ∧ succ1(n) = succ2(n)

Definition 105 (interpreting preprocessed combinatory terms as term graphs). For any
preprocessed term t, its term graph γ(t) over the function symbols I , K , S, and A is defined
as follows:

• Nt is the set of declared references in t.

• labt is defined on the definiens of a reference (i.e., a denotable term): for a combi-
nator, it yields the respective function symbol I , K or S; for a combination, it yields
the application symbol A; and for a reference, it yields the result of applying labt to
this reference, which in effect acts as an alias for a node.9

• succt is defined on the definiens of a reference: for a combination, it yields the
corresponding pair of references, and for everything else, the empty tuple.

• rt is the innermost reference of the term.

9This application is well behaved since terms are acyclic.
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10. Three syntactic theories for combinatory graph reduction

For example, the first reduct of the term S K K I after preprocessing:

let x0 = S in
let x1 = K in
let x2 = x0 x1 in
let x3 = K in
let x4 = x1 x3 in
let x5 = I in
let x7 = x1 x5 in
let x8 = x3 x5 in
let x6 = x7 x8 in
x6

translates to the term graph: N = {x0, · · · , x8},

lab(x) =















S if x = x0
K if x = x1
K if x = x3
I if x = x5
A otherwise

succ(x) =























{x0, x1} if x = x2
{x1, x3} if x = x4
{x7, x8} if x = x6
{x1, x5} if x = x7
{x3, x5} if x = x8
; otherwise

with root r= x6. After garbage collecting unreachable nodes (i.e., x0, x2 and x4) this term
graph is depicted as:

A:x6

xx &&
A:x7

xx

$$

A:x8

xx

zz

K :x1 K :x3

I :x5

Using the interpretation of Definition 105, we can translate the contraction rules over
combinatory terms to graph-rewriting rules [24, Section 4.4.4]. The translation of (I), (K)
and (S′) gives us rewriting rules with the side condition that the redex is rooted, meaning
that there is a path from the root of the graph to the redex, which is the case here and is
manifested by its def-use chain. Terms in our language are therefore a restricted form of
term graphs: directed acyclic graphs with an ordering hierarchy imposed on succ by the
scoping of nested let expressions. (In his PhD thesis [33], Blom refers to this property of
term graphs as ‘horizontal sharing.’)

10.3.1 A reduction semantics

Here is the full definition of the syntax after preprocessing terms into C -nf:

Program 3 p ::= let x = d in t
Denotable Term 3 d ::= I | K | S | x x | x

Term 3 t ::= let x = d in t | x
Reduction Context 3 E ::= [ ] | let x = d in E

Def-use Chain 3 C ::= [ ] | let x = [ ] x in E[C[x]]
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(I) let x1 = I in
E1[let x0 = x1 y0 in

E0[C[x0]]]

→ let x1 = I in
E1[let x0 = y0 in

E0[C[x0]]]

(K) let x2 = K in
E2[let x1 = x2 y1 in

E1[let x0 = x1 y0 in
E0[C[x0]]]]

→ let x2 = K in
E2[let x1 = x2 y1 in

E1[let x0 = y1 in
E0[C[x0]]]]

(S) let x3 = S in
E3[let x2 = x3 y2 in

E2[let x1 = x2 y1 in
E1[let x0 = x1 y0 in

E0[C[x0]]]]]

→ let x3 = S in
E3[let x2 = x3 y2 in

E2[let x1 = x2 y1 in
E1[let x4 = y2 y0 in

let x5 = y1 y0 in
let x0 = x4 x5 in
E0[C[x0]]]]]

where x4 and x5 are fresh

(ref) let x0 = x1 in E0[C[x0]] → let x0 = x1 in E0[C[x1]]

Figure 10.6: Reduction semantics for combinatory graph reduction
over preprocessed terms: axioms

Axioms Figure 10.6 displays the axioms. Each of (I) and (K) is much as the correspond-
ing axiom in Section 10.2, though we have specialized it with respect to the grammar of
preprocessed terms. The (S) axiom is a further specialization of the (S′) axiom. Specif-
ically, since the right-hand side of any combination is known to be a reference, there is
no need to introduce new let expressions to preserve sharing. As for the (ref) axiom, it is
unchanged.

The notion of reduction on preprocessed terms is G :

G = (I)∪ (K)∪ (S)∪ (ref)

Recompositions The recompositions of contexts and def-use chains are defined in the
same way as in Section 10.2.

Decomposition Decomposition is much as in Section 10.2, though we have specialized
it with respect to the grammar of preprocessed terms. Its definition is displayed in
Figure 10.7.

One-step reduction Performing one contraction in a term that is not inG -normal form
is defined as (1) locating a redex and its context through a number of decomposition steps
according to the reduction strategy, (2) contracting this redex, and (3) recomposing the
resulting contractum into the context:
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〈let x = d in t, E〉term ↓dec 〈t, let x = d in E〉term
〈x , E〉term ↓dec 〈E, (x , [ ], [ ])〉cont

〈[ ], t〉cont ↓dec 〈t〉nf
〈let x = d in E, t〉cont ↓dec 〈E, let x = d in t〉cont

〈let x0 = d in E, (x0, E0, C)〉cont ↓dec 〈x0, d, E0, C, E〉den
〈let x = d in E, (x0, E0, C)〉cont ↓dec 〈E, (x0, let x = d in E0, C)〉cont

where x 6= x0

〈x1, I , E1, Πi=0
0 (x i , yi , Ei) · C, E〉den ↓dec 〈E, let x1 = I in E1[let x0 = x1 y0 in

E0[C[x0]]]〉dec
where 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

〈x2, K , E2, Πi=1
0 (x i , yi , Ei) · C, E〉den ↓dec 〈E, let x2 = K in E2[let x1 = x2 y1 in

E1[let x0 = x1 y0 in
E0[C[x0]]]]〉dec

where 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

〈x3, S, E3, Πi=2
0 (x i , yi , Ei) · C, E〉den ↓dec 〈E, let x3 = S in E3[let x2 = x3 y2 in

E2[let x1 = x2 y1 in
E1[let x0 = x1 y0 in

E0[C[x0]]]]]〉dec
where 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

〈x0, d0, E0, C, E〉den ↓dec 〈E, let x0 = d0 in E0[C[x0]]〉cont
where d0 = I and |C|< 1

or d0 = K and |C|< 2
or d0 = S and |C|< 3

and 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

〈x0, x1 y0, E0, C, E〉den ↓dec 〈E, (x1, [ ], (x0, y0, E0) · C)〉cont
〈x0, x1, E0, C, E〉den ↓dec 〈E, let x0 = x1 in E0[C[x0]]〉dec

where 〈C, x0〉chain ⇑rec C[x0]
and 〈E0, C[x0]〉oi ⇑rec E0[C[x0]]

Figure 10.7: Reduction semantics for combinatory graph reduction
over preprocessed terms: decomposition

Definition 106 (standard one-step reduction). For any t,

t 7→G t ′′ iff







〈t, [ ]〉term ↓∗dec 〈E, r〉dec

(r, t ′) ∈ G
〈E, t ′〉io ⇑rec t ′′
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Reduction-based evaluation The standard reduction-based evaluation is defined as
the iteration of the standard one-step reduction. It thus enumerates the reduction se-
quence of any given program:

Definition 107 (standard reduction-based evaluation). Standard reduction-based evalu-
ation, 7→∗G , is the transitive-reflexive closure of standard one-step reduction, 7→G .

10.3.2 A storeless abstract machine

Using refocusing, the reduction-free abstract machine corresponding to Definition 107 is
calculated as in Section 10.2.2. For brevity, we omit this uncompressed abstract machine
here.

10.3.3 A storeless abstract machine after transition compression

The abstract machine of Section 10.3.2 can be hereditarily compressed as in Section 10.2.3.
We display it in Figure 10.8.

Definition 108 (standard reduction-free evaluation). Standard reduction-free evalua-
tion,→∗step, is the transitive closure of→step. (See Figure 10.8.)

Proposition 109 (full correctness). For any program p,

p 7→∗G t ∧ t ∈ G -nf ⇔ 〈p, [ ]〉term→∗step 〈t〉nf

Proof. Correctness of refocusing and transition compression.

10.3.4 Summary and conclusion

Starting from a completely spelled-out reduction semantics for preprocessed combinatory
term graphs, we have derived a storeless abstract machine. As in Section 10.2, these two
semantic artifacts share the same syntactic representations and proceed in lock step.

10.4 Store-based combinatory graph reduction

In this section, we no longer denote graph vertices with let bindings, but as bindings in a
global store:

Global Store 3 σ
Location 3 x , y

Indeed, in the storeless accounts of Sections 10.2 and 10.3, let expressions declare refer-
ences to denotable terms, and all these references are distinct. In the store-based account
presented in this section, a global store maps locations to storable terms. Given a store σ,
a location x and a storable term s, we write σ[x := s] for the store σ′ such that σ′(x) = s
and σ′(x ′) = σ(x ′) for x ′ 6= x .

We therefore revise the syntax of Section 10.3 as follows:

Program 3 p ::= (x ,σ)
Storable Term 3 s ::= I | K | S | x x | x

Ancestor Stack 3 a ::= [ ] | (x , x) · a
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10.4. Store-based combinatory graph reduction

A program now pairs the root of a graph in a store with this store. Denotable terms
have been replaced by storable terms. Terms and reduction contexts have been replaced
by locations in the store. Def-use chains have become what Turner calls (left) ancestor
stacks [209, page 42]. We write |a| for the height of an ancestor stack a.

Translating the preprocessed term graphs of Section 10.3 to store-based term graphs
is straightforward:

Definition 110 (let-based to store-based).

¹let x = d in tºσ = ¹tºσ[x :=¹dº′]
¹xºσ = (x ,σ)

¹Iº′ = I
¹Kº′ = K
¹Sº′ = S

¹x0 x1º
′ = ¹x0º

′
¹x1º

′

¹xº′ = x

where the auxiliary mapping ¹·º′ maps denotables to storables.

This compositional encoding maps the explicit declaration of a reference in a let expression
to an implicit declaration of a location in the store. The resulting store-based combinatory
terms can therefore also be interpreted as term graphs:

Definition 111 (interpreting store-based combinatory terms as term graphs). For any
translated store-based term (x ,σ), its term graph γ(x ,σ) over the function symbols I , K ,
S, and A is defined as follows:

• N(x ,σ) is the set of declared locations in σ.

• lab(x ,σ) is defined on the contents of a location (i.e., a storable term): for a combi-
nator, it yields the respective function symbol I , K or S; for a combination, it yields
the application symbol A; and for a location, it yields the result of applying lab(x ,σ)

to this location, which in effect acts as an alias for a node.10

• succ(x ,σ) is defined on the contents of a location: for a combination, it yields the
corresponding pair of locations, and for everything else, the empty tuple.

• r(x ,σ) is the root of the store-based term, i.e., x .

Proposition 112 (equivalence of term graphs). The term graph of any closed let-based com-
binatory term, t, coincides with the term graph of the corresponding store-based combinatory
term, ¹tºσ, for any σ, i.e., γ(t)≡ γ(¹tºσ).

Proof. By induction on t, using a sub-induction on denotable terms.

10.4.1 A reduction semantics

Axioms An axiom is of the form (x ,σ)→ (x ′,σ′) where x and x ′ are the left and right
root respectively. For such an axiom, a redex is a pair (x ′′,σ′′) together with a renaming
of locations defined by a structure-preserving function on storable terms, π, such that:

π(x) = x ′′ and ∀y ∈ dom(σ) . π(σ(y)) = σ′′(π(y))

10Again, this application is well behaved since translated terms are acyclic.
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10. Three syntactic theories for combinatory graph reduction

(I) (x0, σ[x1 := I][x0 := x1 y0]) → (x0, σ[x1 := I][x0 := y0])

(K) (x0, σ[x2 :=K]
[x1 := x2 y1]
[x0 := x1 y0])

→ (x0, σ[x2 :=K]
[x1 := x2 y1]
[x0 := y1])

(S) (x0, σ[x3 :=S]
[x2 := x3 y2]
[x1 := x2 y1]
[x0 := x1 y0])

→ (x0, σ[x3 :=S]
[x2 := x3 y2]
[x1 := x2 y1]
[x4 := y2 y0]
[x5 := y1 y0]
[x0 := x4 x5])

where x4 and x5 are fresh

(loc1) (x0, σ[x0 := x1]) → (x1, σ[x0 := x1])
where x0 is the graph root

(loc2) (x0, σ[x0 := x1]) → (x1, σ[x0 := x1][x := x1 y])
where x is reachable from the graph root
and σ(x) = x0 y for some y

Figure 10.9: Reduction semantics for store-based combinatory graph reduction: axioms

In words, the renaming must map the left root to the root of the redex, and any location
in the store of the axiom must have a corresponding location in the store of the redex. As
before, we write σ[x := s] for a store mapping the location x to the storable term s.

The axioms are displayed in Figure 10.9. They assume that there is a path from the
graph root to the redex root. This assumption mirrors the decomposition conditions in
the axioms of Figure 10.6. Consequently, the location axiom is split in two cases: one if
the redex root is the graph root, corresponding to a decomposition into the empty def-use
chain, and one if the redex root is not the graph root, corresponding to a decomposition
into a non-empty def-use chain.

The notion of reduction on store-based terms isH :

H = (I)∪ (K)∪ (S)∪ (loc1)∪ (loc2)

Recomposition The recomposition of an ancestor stack with a store-based term relo-
cates the root of the graph:

〈[ ], x , σ〉stack ⇑rec (x ,σ)
〈a, x0, σ〉stack ⇑rec (x ′,σ)

〈(x0, y0) · a, x , σ〉stack ⇑rec (x ′,σ)

Definition 113 (recomposition of ancestor stacks with store-based terms). An ancestor
stack a is recomposed with a store-based term (x ,σ) into a store-based term (x ′,σ)when-
ever 〈a, x , σ〉stack ⇑rec (x ′,σ) holds.
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〈[ ], x , σ〉stack ↓dec 〈(x ,σ)〉nf
〈(x0, y0) · a, x1, σ〉stack ↓dec 〈a, x0, σ〉stack

〈x1, I , (x0, y0) · a, σ〉sto ↓dec 〈a, (x0, σ)〉dec
〈x2, K , (x1, y1) · (x0, y0) · a, σ〉sto ↓dec 〈a, (x0, σ)〉dec

〈x3, S, (x2, y2) · (x1, y1) · (x0, y0) · a, σ〉sto ↓dec 〈a, (x0, σ)〉dec
〈x0, s, a, σ〉sto ↓dec 〈a, x0, σ〉stack

where s = I and |a|< 1
or s = K and |a|< 2
or s = S and |a|< 3

〈x0, x1 y0, a, σ〉sto ↓dec 〈x1, σ(x1), (x0, y0) · a, σ〉sto
〈x0, x1, a, σ〉sto ↓dec 〈a, (x0, σ)〉dec

Figure 10.10: Reduction semantics for store-based combinatory graph reduction:
decomposition

Decomposition Decomposition is much as in Section 10.2 though we have further spe-
cialized it with respect to store-based terms. The search previously done at return time
is now done at call time. Starting from the root location, x , we recursively search for a
redex, incrementally constructing an ancestor stack for x . If we do not find any redex,
the term is inH -normal form. Figure 10.10 displays this search as a transition system:

Definition 114 (decomposition). The decomposition relation, ↓∗dec, is the transitive clo-
sure of ↓dec. (See Figure 10.10.)

As in Section 10.2.1, decomposition can be refunctionalized to a total and composi-
tional function. Formally:

Property 115 (vacuous decomposition of normal forms). For any (x ,σ) ∈H -nf,

〈x , σ(x), [ ], σ〉sto ↓∗dec 〈(x ,σ)〉nf

Property 116 (unique decomposition of non-normal forms). For any (x ,σ) 6∈ H -nf,

〈x , σ(x), [ ], σ〉sto ↓∗dec 〈a, (x ′,σ)〉dec

where (x ′,σ) is the left-most outermost redex of (x ,σ) and a is the ancestor stack from
x to x ′.

One-step reduction Performing one contraction in a term that is not in H -normal
form is defined as (1) locating a redex and its context through a number of decomposition
steps according to the reduction strategy, (2) contracting this redex, and (3) recomposing
the resulting contractum into the context:

Definition 117 (standard one-step reduction). For any (x ,σ),

(x ,σ) 7→H (x ′,σ′) iff







〈x , σ(x), [ ], σ〉sto ↓∗dec 〈a, (x ′′, σ)〉dec

((x ′′, σ), (x ′′′, σ′)) ∈ H
〈a, x ′′′, σ′〉stack ⇑rec (x ′,σ′)
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Reduction-based evaluation The standard reduction-based evaluation is defined as
the iteration of the standard one-step reduction. It thus enumerates the reduction se-
quence of any given program:

Definition 118 (standard reduction-based evaluation). Standard reduction-based evalu-
ation, 7→∗H , is the transitive-reflexive closure of standard one-step reduction, 7→H .

The standard reduction of let-based combinatory terms (Definition 106) is bisimilar to
the standard reduction of store-based combinatory terms (Definition 117):

Proposition 119 (bisimilarity of one-step reduction). For any let-based term t and store-
based term (x ,σ) such that γ(t)≡ γ(x ,σ),

t 7→G t ′ ⇐⇒ (x ,σ) 7→H (x ′,σ′)

and γ(t ′)≡ γ(x ′,σ′).

The proof of Proposition 119 makes use of the following lemmas:

Lemma 120 (decomposition lookup). For any let-based term t = E[C[x]],

〈E, (x , [ ], C)〉cont ↓∗dec 〈x , d, E0, C, E′〉den

where
〈C, x〉chain ⇑rec C[x]
〈E0, C[x]〉oi ⇑rec E0[C[x]]

〈E′, let x = d in E0[C[x]]〉io ⇑rec t

Proof. By induction on E

Lemma 121 (decomposition invariance). Let ≈ be a binary relation between den-states
and sto-states defined by:

〈x , d, E0, C, E〉den ≈ 〈x , s, a, σ〉sto iff γ(E[t])≡ γ(rt ,σ)

where t = let x = d in E0[C[x]], and

〈C, x〉chain ⇑rec C[x]
〈E0, C[x]〉oi ⇑rec E0[C[x]]
〈E, t〉io ⇑rec E[t]

〈a, x , σ〉stack ⇑rec (rt ,σ)

If 〈x , d, E0, C, E〉den ≈ 〈x , s, a, σ〉sto, then

〈x , d, E0, C, E〉den ↓∗dec 〈x
′, d ′, E′0, C′, E′〉den

m
〈x , s, a, σ〉sto ↓∗dec 〈x

′, s′, a′, σ〉sto

where 〈x ′, d ′, E′0, C′, E′〉den ≈ 〈x ′, s′, a′, σ〉sto.

Proof. By case analysis on den-states using sub-induction for recompositions and using
Lemma 120 for the combination case.
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Lemma 122 (sub-graph contraction). If γ(t)v γ(x ,σ)
and 〈a, x , σ〉stack ⇑rec (rt ,σ), then

(t, t ′) ∈ G ⇐⇒ ((x , σ), (x ′,σ′)) ∈H

where γ(t ′)v γ(x ′,σ′), 〈a, x ′, σ′〉stack ⇑rec (rt′ ,σ
′), and ∀y ∈ N(x ,σ)\Nt . σ(y) = σ′(y).

Proof. By case analysis on the axioms using sub-induction for recomposition.

of Proposition 119. Let γ(t)≡ γ(x ,σ), by induction on t and using Lemma 120:

〈t, [ ]〉term ↓∗dec 〈E, (x , [ ], [ ])〉cont ↓∗dec 〈x , d, E0, [ ], E′〉den

where t = E[x] = E′[let x = d in E0[x]]. Thus,

〈x , d, E0, [ ], E′〉den ≈ 〈x , σ(x), [ ], σ〉sto
By Lemma 121 and assuming a redex is found:

〈x , d, E0, [ ], E′〉den ↓∗dec 〈x
′, d ′, E′0, C, E′′〉den ↓dec 〈t ′, E′′〉dec

〈x , σ(x), [ ], σ〉sto ↓∗dec 〈x ′, s, a, σ〉sto ↓dec 〈(x ′′,σ), a〉dec

where γ(E′′[t ′]) ≡ γ(rt′ ,σ), and thus γ(t ′) v γ(x ′′,σ) and 〈a, x ′′, σ〉stack ⇑rec (rt′ ,σ). By
Lemma 122: (t ′, t ′′) ∈ G , ((x ′′,σ), (x ′′′,σ′)) ∈ H , γ(t ′′) v γ(x ′′′,σ′), NE′′[t′′] = N(x ′′′ ,σ′),
and thus we have that γ(E′′[t ′′])≡ γ(rt′′ ,σ

′) where

〈E′′, t ′′〉io ⇑rec E′′[t ′′]
〈a, x ′′′, σ′〉stack ⇑rec (rt′′ ,σ

′)

using induction on E′′.

10.4.2 A store-based abstract machine

Using refocusing, the reduction-free abstract machine corresponding to Definition 118 is
calculated as in Section 10.2.2. For brevity, we omit this uncompressed abstract machine
here.

10.4.3 A store-based abstract machine after transition compression

The abstract machine of Section 10.4.2 can be hereditarily compressed as done in Sec-
tion 10.2.3. We display it in Figure 10.11. Its architecture is that of Turner’s SK-reduction
machine [209]: the left-ancestor stack is incrementally constructed at each combination;
upon reaching a combinator, its arguments are found on top of the ancestor stack and a
graph transformation takes place to rearrange them. In particular, our handling of stored
locations coincides with Turner’s indirection nodes. The only differences are that our ma-
chine accepts the partial application of combinators and that Turner’s combinators are
unboxed, which is an optimization.

Definition 123 (standard reduction-free evaluation). Standard reduction-free evalua-
tion,→∗step, is the transitive closure of→step. (See Figure 10.11.)

Proposition 124 (full correctness). For any program (x ,σ),

(x ,σ) 7→∗H (x
′,σ′) ∧ (x ′,σ′) ∈H -nf ⇔ 〈x , σ(x), [ ], σ〉sto→∗step 〈(x

′,σ′)〉nf

Proof. Correctness of refocusing and transition compression.
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〈[ ], x , σ〉stack →step 〈(x ,σ)〉nf
〈(x0, y0) · a, x1, σ〉stack →step 〈a, x0, σ〉stack

〈x1, I , (x0, y0) · a, σ〉sto →step 〈x0, y0, a, σ[x0 := y0]〉sto
〈x2, K , (x1, y1) · (x0, y0) · a, σ〉sto →step 〈x0, y1, a, σ[x0 := y1]〉sto

〈x3, S, (x2, y2) · (x1, y1) · (x0, y0) · a, σ〉sto →step 〈y2, σ′(y2), (x4, y0) · (x0, y5) · a, σ′〉sto
where σ′ = σ[x4 := y2 y0]

[x5 := y1 y0]
[x0 := x4 x5]

and x4 and x5 are fresh
〈x0, s, a, σ〉sto →step 〈a, x0, σ〉stack

where s = I and |a|< 1,
or s = K and |a|< 2
or s = S and |a|< 3

〈x0, x1 y0, a, σ〉sto →step 〈x1, σ(x1), (x0, y0) · a, σ〉sto
〈x0, x1, [ ], σ〉sto →step 〈x1, σ(x1), [ ], σ〉sto

〈x0, x1, (x , y) · a, σ〉sto →step 〈x1, σ′(x1), (x , y) · a, σ′〉sto
where σ′ = σ[x := x1 y]

Figure 10.11: Store-based abstract machine for combinatory graph reduction
after transition compression

10.4.4 Summary and conclusion

Starting from a completely spelled-out reduction semantics for combinatory term graphs
in a store, we have derived a store-based abstract machine. The structure of this store-
based abstract machine coincides with that of Turner’s SK-reduction machine.

10.5 The Y Combinator

In this section, we briefly cover extending the semantics for the preprocessed terms of
Section 10.3 with cyclic constructs.11 More precisely, we add a fixed-point combinator Y
as traditionally specified by the equation Y t = t(Y t). This equation exhibits two types of
duplication:

1. the duplication of non-recursive subterms, in this case t; and

2. the duplication of locally recursive subterms, in this case Y t.

Both types of duplication can be avoided using graphs, and these graphs can be repre-
sented syntactically. To syntactically capture the sharing of non-recursive subterms, we
can use let expressions as shown in the previous sections. To syntactically capture the
sharing of locally recursive subterms, we enrich the def-use chains with a letrec construct
for local recursive declarations, letrec x = d in t, where the denoted term, d, can refer to

11The implementation in ML is available at: http://www.zerny.dk/syntactic-graph-reduction.html
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its reference, x , recursively. This “tying of the knot,” to paraphrase Landin, is realized by
the following axiom:

(Y) let x1 = Y in
E1[let x0 = x1 y0 in

E0[C[x0]]]

→ let x1 = Y in
E1[letrec x0 = y0 x0 in

E0[C[x0]]]

Instead of containing a new subterm of the form Y t, the contractum recursively refers
to itself through the recursive declaration letrec. The contractum thus shares the recur-
sively defined subterm Y t.

Cyclic terms raise a new issue: naive contraction can bring references out of the scope
of their definitions. A correct treatment is thus to λ-lift [72, 121] the cyclic definition so
it can be referred to lexically in the contractum.

This situation arises in the (S) axiom. Consider the following redex and its contraction
according to the (S) axiom of Figure 10.6:

let x3 = S in
E3[let x2 = x3 y2 in

E2[let x1 = x2 y1 in
E1[letrec x0 = x1 x0 in

E0[C[x0]]]]]

→ let x3 = S in
E3[let x2 = x3 y2 in

E2[let x1 = x2 y1 in
E1[let x4 = y2 x0 in

let x5 = y1 x0 in
letrec x0 = x4 x5 in
E0[C[x0]]]]]

where x4 and x5 are fresh

Here the contractum contains two occurrences of x0 that are out of scope. This scoping
issue is solved by λ-lifting the recursive binding:

let x3 = S in
E3[let x2 = x3 y2 in

E2[let x1 = x2 y1 in
E1[letrec x0 = x1 x0 in

E0[C[x0]]]]]

→ let x3 = S in
E3[let x2 = x3 y2 in

E2[let x1 = x2 y1 in
E1[letrec x6 = x1 x6 in

let x4 = y2 x6 in
let x5 = y1 x6 in
let x0 = x4 x5 in
E0[C[x0]]]]]

where x4, x5 and x6 are fresh

This solution does maintain proper scoping, but it still suffers from the same duplication
of locally recursive subterms as we started out with. If x6 is needed, the same contraction
will again take place instead of reusing the contractum just obtained. In other words, we
would like to tie another knot.

From knot to Gordian knot We further enrich the def-use chains with a letrec con-
struct for local and mutually recursive declarations. The example from before can then
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be restated as follows:

let x3 = S in
E3[let x2 = x3 y2 in

E2[let x1 = x2 y1 in
E1[letrec x0 = x1 x0 in

E0[C[x0]]]]]

→ let x3 = S in
E3[let x2 = x3 y2 in

E2[let x1 = x2 y1 in
E1[letrec x4 = y2 x0

x5 = y1 x0
x0 = x4 x5

in E0[C[x0]]]]]
where x4 and x5 are fresh

Adding mutually recursive definitions makes it possible to share more subgraphs. Indeed,
in his PhD thesis, Blom [33, Section 4.5] describes how increasing the number of mutually
recursive definitions strictly increases expressible sharing.

Now that terms are cyclic, special care must be taken when defining their interpreta-
tion as term graphs. In contrast to Definition 105, the definition of labt must map any
reference, t = x , that is part of a cyclic chain of references12 to a term graph of undefined
value, e.g., the fixed point of I . For example, consider the reduction of Y I :

letrec x2 = Y
x1 = I
x0 = x2 x1

in x0

→ letrec x2 = Y
x1 = I
x0 = x1 x0

in x0

→ letrec x2 = Y
x1 = I
x0 = x0

in x0

The rightmost reduct in the above reduction sequence does not contain a redex. Indeed,
our decomposition function as defined for acyclic terms would diverge if applied to such
a cyclic term. Following tradition, we reduce these problematic cyclic terms to a “black
hole” value in our syntactic theory of cyclic graph reduction using letrec. For a syntactic
theory of the cyclic call-by-need λ-calculus using letrec, we refer the reader to Ariola and
Felleisen’s work [1997] and to Nakata and Hasegawa’s work [2009].

In any case, after specifying the syntactic treatment of cyclic programs, the story is once
again compellingly simple: as in Sections 10.2.2, 10.3.2 and 10.4.2, an abstract machine
can be calculated directly from the reduction semantics. The resulting machine is larger
but the derivation applies.

10.6 Related work

It has long been noticed that combinators make it possible to do without variables. For ex-
ample, in the 1960s, Robinson outlined how this could be done to implement logics [181].
However, it took Turner to realize in the 1970’s that (1) combinatory graph reduction
could be implemented efficiently, and (2) combinatory graph reduction provides an effi-
cient implementation technique for lazy functional languages [209]. Turner’s work ignited
a culture of implementation techniques in the 1980’s [159], whose goal in retrospect can
be characterized as designing efficient big-step graph reducers.

12By a cyclic chain of references, we mean any series of references for which one points back to a previous
element in the chain and without any intermediate occurrence of a combination anywhere in the chain. Whether
a reference is part of a such a cyclic chain is a decidable property.
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Due to the increased interest in graph reduction, Barendregt et al. [24] developed term
graphs and term-graph rewriting. Their work has since been used to model languages
with sharing and to reason about program transformations in the presence of sharing [11,
100, 118, 126, 168]. Later work by Ariola and Klop [13] provides an equational theory
for term-graph rewriting with cycles, a topic further developed by Blom [33] in his PhD
thesis and since by Nakata and Hasegawa [152].

Over the 2000’s, the first author and his students have investigated off-the-shelf pro-
gram-transformation techniques for inter-deriving semantic artifacts [5, 70, 222]. The
present work is an outgrowth of this investigation.

10.7 Conclusion and future work

Methodologically, mathematicians who wrote about their art (Alexandre Grothendriek,
Jacques Hadamard, Paul Halmos, Godfrey H. Hardy, Donald E. Knuth, John E. Littlewood,
and George Pólya for example) clearly describe how their research is typically structured
in two stages: (1) an exploratory stage where they boldly move forward, discovering right
and left, and (2) a descriptive stage where they retrace their steps and revisit their foray,
verify it, structure it, and put it into narrative shape. As far as abstract machines are
concerned, tradition has it to seek new semantic artifacts, which is characteristic of the
first stage. Our work stems from this tradition, though by now it subscribes to the second
stage as we field-test our derivational tools.

The present article reports our field test of combinatory graph reduction. Our main
result is that representing def-use chains using reduction contexts and let expressions,
which, in retrospect, is at the heart of Ariola et al.’s syntactic theory of the call-by-need
λ-calculus, also makes it possible to account for combinatory graph reduction. We have
stated in complete detail three reduction semantics and have derived three storeless ab-
stract machines. Interpreting denotable entities as storable ones in a global store, we have
rediscovered David Turner’s graph-reduction machine.

Currently, we are inter-deriving natural semantics that correspond to the abstract ma-
chines. We are also adding literals and strict arithmetic and logic functions, as well as
garbage-collection rules such as the following one:

let x = d in t → t if x does not occur in t

We are also wondering which kind of garbage collector is fostered by the nested let ex-
pressions of the syntactic theories and also the extent to which its references are akin to
Curry’s apparent variables [52].
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Chapter 11

A logical correspondence

between abstract machines

and natural semantics

Joint work with Robert J. Simmons.

Abstract

We present a logical correspondence between natural semantics and abstract ma-
chines. This correspondence enables the mechanical and fully-correct construction of
an abstract machine from a natural semantics. Our logical correspondence mirrors the
Reynolds functional correspondence but places it within the domain of a logical frame-
work. Natural semantics and abstract machines are instances of substructural opera-
tional semantics. As a byproduct, using a substructural logical framework, we bring
concurrent and stateful models into the domain of the logical correspondence.

11.1 Introduction

The literature contains numerous specifications of formal semantics and therefore many
proposals for relating them. These relations are stated using a diversity of methods and
methodologies. To the best of the authors’ knowledge, the only methodology to have seen
repeated use outside the work of its inventors [10, 17, 175, 193] is the Reynolds functional
correspondence [5, 176].

Our goal [198, 224] is to develop a logical counterpart to this functional correspon-
dence. We want it to be formal, mechanizable, and widely applicable.

Logic provides adequate means for the specification of programming-language seman-
tics in general [108]. In other words, logical specifications are formal objects that can be
stated and proved in one-to-one correspondence with ‘informal’ semantic objects. Specif-
ically, substructural logics provide an expressive specification language for concurrent and
effectful systems [165, 218].
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11. A logical correspondence between abstract machines and natural semantics

λx .e ⇓ λx .e
e1 ⇓ λx .e e2 ⇓ v2 e[v2/x] ⇓ v

e1 e2 ⇓ v

Figure 11.1: A natural semantics for CBV evaluation

k . λx .e 7→ k / λx .e k . e1 e2 7→ (k;� e2) . e1

(k;� e2) / λx .e 7→ (k; (λx .e)�) . e2

(k; (λx .e)�) / v2 7→ k . e[v2/x]

Figure 11.2: An abstract machine semantics for CBV evaluation

In this paper, we present a method for relating natural semantics with abstract ma-
chines within a logical framework. Following tradition [45, 123], we interpret Horn-
clause specifications of a natural semantics as a logic program. The resulting logic pro-
gram is then transformed in several steps to make its operational behavior explicit. These
steps mirror steps in the functional correspondence, yet the transformations have been
developed independently and for other purposes. Indeed, this operationalization is an
instance of a more general theorem relating backwards-chaining and forwards-chaining
proof search.

Outline Section 11.2 motivates the use of different semantic styles with a discussion
of related work and the introduction of a simple call-by-value language which will be
our running example throughout. Section 11.3 describes the logical interpretation of
natural semantics. Section 11.4 describes the logical interpretation of abstract-machine
semantics. Section 11.5 establishes the correspondence between these interpretations in
terms of two generally correct transformations on specifications, operationalization (Sec-
tion 11.5.1) and defunctionalization (Section 11.5.2), as well as the prototype implemen-
tation of these transformations (Section 11.5.3). Section 11.6 discusses nondeterminism
and its relation to proof-search interpretations. Section 11.7 puts the present work in
perspective with discussions on type safety (Section 11.7.1), destination passing style
(Section 11.7.2), abstract interpretation (Section 11.7.3), and inverse correspondences
(Section 11.7.4).

11.2 Accounting for divergence and failure

We start by illustrating the difference in expressiveness of a natural semantics compared
to an abstract machine with the problem of distinguishing divergence from failure. This
problem will serve as our running example throughout, being simple and concise. How-
ever, the development holds in general even for complicated languages with complex
control, such as call by need, as discussed in Section 11.5.3.

Expressions are λ-terms in addition to an extra nonsense term, here denoted by junk.
As usual, syntactic values are λ-abstractions, and contexts are a list of application frames
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terminated by the empty frame halt:

e ::= x | λx .e | e1 e2 | junk
v ::= λx .e
k ::= halt | k;� e2 | k; (λx .e)�

We give two semantics for call-by-value (CBV) evaluation: Figure 11.1 defines a big-
step semantics in the form of a natural semantics [45, 123]; Figure 11.2 defines a small-
step semantics in the form of an abstract machine. Common to these specifications is the
appearance of being specified by the same logical tool: inductive definitions. However,
their means of characterization are very different.

Consider the term ω = (λx .x x) (λx .x x). The abstract machine can characterize
developments of ω. The natural semantics cannot find a v such that ω ⇓ v is deriv-
able. As a small-step semantics the abstract machine can characterize how ((λx .x x) junk)
goes wrong. As a big-step semantics the natural semantics cannot find a v such that
((λx .x x) junk) ⇓ v is derivable. Working with the natural semantics, therefore, we can-
not express which programs can go wrong, should we for example wish to show that they
are outside a set of well-typed programs that includes non-terminating programs.

One solution to this inexpressibility is to introduce an additional big-step predicate that
characterizes how evaluation can go wrong. Another solution is to characterize the set of
incomplete derivations that operationally correspond to stuck states. In both cases, this
doubles the size of the specification and is fragile. Nothing prohibits writing an incorrect
specification. This fragility is a known obstacle to proving type soundness with natural-
semantics specifications. Several efforts have been made to ameliorate this situation:

A coinductive representation Based on the work of Cousot and Cousot [50], Leroy
and Grall strengthened the expressive power of a big-step semantics [137] by using coin-
ductive definitions. Similarly, Danielsson used the partiality monad to account for diver-
gence [54]. Both solutions require inventing a new semantics in a new semantic notation
and require much of the same duplication as is the case for a natural semantics, e.g.,
inductive rules for converging computations and coinductive rules for diverging compu-
tations. In contrast, we use established logics to represent established semantic notations
and the result, a substructural specification of an abstract machine, represents an artifact
of considerable expressiveness, e.g., as a transition relation for a collecting semantics [49].

A functional representation Based on Reynolds’s seminal work on definitional inter-
preters [176], Danvy et al. have shown how semantic specifications can be inter-derived [5,
7, 8, 27, 62]. Their method is to represent the semantic artifacts as functional programs
and to inter-derive these functional representations using off-the-shelf and fully-correct
program transformations, thereby subsuming the practice of reinventing new semantics
on a case-by-case basis. Subsequent work has shown this correspondence to be widely
applicable, including applications to algorithms in general [76], to languages with com-
putational effects [8], to properly tail-recursive stack inspection [27], to lazy evalua-
tion [7, 77], and logic [32, 175]. We present a logical correspondence inspired by this
work where the logical interpretations of the semantic artifacts are adequate and formally
specified within a logical framework.
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A logical representation The phrase “natural semantics” was introduced in the TY-
POL compiler which translated natural semantics specifications to logic programs in Pro-
log [45]. The LF logical framework [110] and the logic-programming interpretation given
by Elf [161] follow the same tradition, representing natural semantics as an inductive def-
inition and interpreting it operationally by a proof-search procedure. Both Hannan and
Miller [106] and Ager [3] derive abstract machines by representing a natural semantics
as a logical specification, in λProlog and L-attributed grammars respectively, and then
applying logical transformations. Our work follows this tradition of interpreting logical
specifications and assigning operational behavior by means of proof search. Furthermore,
our transformations yields substructural specifications within a logical framework that
supports stateful and concurrent features [165, 198].

11.3 Natural semantics as logic programs

This section makes precise the on-paper inductive definitions that define a natural seman-
tics. Concretely, we follow the LF methodology and require adequate encodings of the
syntactic and deductive apparatus in the logical framework LF [110]. These encodings
enable formal reasoning with the support of mechanical verification [109]. The method-
ology of adequate encoding is generally applicable and well-covered elsewhere. In this
section, we present adequate LF encodings of our specific running examples: the expres-
sions of the λ-calculus and the natural semantics from Figure 11.1.

In Section 11.3.1, we present and discuss an LF signature as a logical artifact that
adequately encodes the natural semantics in Figure 11.1. In Section 11.3.2, we informally
describe how our logical artifact can be given an alternative operational interpretation as
proof search.

11.3.1 Encoding

The encoding of a natural semantics into LF consists of two parts: first, we must provide an
encoding of the informal syntax and judgments of our object language into representations
in LF, and second, we must show these encodings adequate.

The syntax of λ-expressions from the introduction is represented by canonical forms
of type exp under the following LF signature.

exp: type.
lam: (exp→ exp)→ exp.
app: exp→ exp→ exp.
junk: exp.

In words, λ-expressions are represented by the LF type exp and this type is given three
formation rules:

1. lam takes an LF term of function type exp→ exp and forms an expression in exp
that represents a λ-abstraction;

2. app takes two LF terms of type exp and forms an expression in exp that represents
a λ-application; and

3. junk takes no LF terms and forms an expression in exp that represents the extra
nonsense term.
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This encoding uses higher-order abstract syntax, i.e., it uses abstraction and substitution of
the defining language to represent abstraction and substitution of the defined language.
The LF framework is designed to provide this substitution mechanism together with a
suitable meta-theory to state and prove that the encoding is adequate with respect to our
‘informal’ BNF presentation of expressions.

Theorem 125 (Adequacy for terms). Up to α-equivalence, there is a bijection between
expressions e (with free variables in the set {x1, . . . , xn}) as defined in the introduction and
canonical (β-normal, η-long) LF terms M such that x1 : exp, . . . , xn : exp ` M : exp.

We write this bijection as ðeñ = M . We also need to know that substitution as defined
over LF terms coincides with the definition of substitution that we refer to in our various
operational semantics.

Theorem 126 (Compositionality for terms). For all e1 and e2, if x is not free in e2 then
ðe1[e2/x]ñ= ðe1ñ[ðe2ñ/x].

Harper and Licata prove a close analogue of these two theorems in great detail in [109,
Section 3.2.2].

Having adequately encoded terms, we next use the dependent types of LF to encode
the judgment e ⇓ v as the dependent type family ev ðeñ ðvñ that takes two arguments of
type exp, following the LF encoding principle of judgments as types [110].

evlam: ev (lam λx . E x) (lam λx . E x).
evapp: ev (app E1 E2) V

← ev E1 (lam λx . E x)
← ev E2 V2
← ev (E V2) V.

The specification above uses the syntactic sugar of backwards-facing implication, which
makes the rules read more like Prolog programs. More specifically, the LF type M ← N1←
. . .← Nn is syntactic sugar for Nn→ . . .→ N1→ M . Capital letters such as E1 and E2 are
variables that are universally quantified implicitly over the entire rule.

Proofs constructed using the rules for natural semantics, as given in Figure 11.1, cor-
respond to LF terms of type ev Ne Nv for some Ne and Nv . This correspondence is made
precise by the following theorem:

Theorem 127 (Adequacy for the natural semantics). Up to α-equivalence, there is a bi-
jection between derivations D of the judgment e ⇓ v and canonical LF terms M such that
· ` M : ev ðeñ ðvñ.

Adequacy theorems of this form proceed by straightforward induction, and are thor-
oughly covered elsewhere [109, Section 3.4]. There are no analogues to compositionality
with natural semantics, and so this completes the LF encoding of our natural semantics
from Figure 11.1. This is a standard methodology in the context of the Twelf meta-logical
framework, and has been shown to be widely applicable.

11.3.2 Execution

We can operationalize a declarative specification in LF with a logic programming interpre-
tation, as is done in the logical frameworks Elf [161] and Twelf [164]. The logic program-
ming interpretation allows us to take an LF term M and attempt to find a term N such
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that the dependent type ev M N is inhabited. By adequacy, this procedure is equivalent
to taking the expression e (where M = ðeñ) and attempting to produce an expression v
(where N = ðvñ) such that e ⇓ v is derivable. The following describes this search strategy:

• If e = λx .e′, derive λx .e′ ⇓ λx .e′ with the rule evlam.

• If e = e1 e2, attempt to derive e1 e2 ⇓ v using the rule evapp:

1. Search for a v1 such that e1 ⇓ v1 is derivable.

2. Assert that v1 = λx .e′ for some e′; fail if it is not.

3. Search for a v2 such that e2 ⇓ v2 is derivable.

4. Let e′′ = e′[v2/x]

5. Search for a v such that e′′ ⇓ v is derivable.

6. If we succeed, we can derive e1 e2 ⇓ v using the rule evapp.

This procedural interpretation is not the default logic programming interpretation of Twelf
or Prolog, because it does not account for backtracking search.1 Because CBV evaluation
in the λ-calculus is deterministic, backtracking is irrelevant, but we will return to this
point in Section 11.6.

In the next section, we will describe an abstract machine that we claim is an imple-
mentation of this search procedure, and observe that it adequately encodes the abstract
machine for the call-by-value λ-calculus from Figure 11.2. Then, in Section 11.5, we will
support our claim by deriving the abstract machine from a sequence of generally applica-
ble and provably correct transformations on logic programs.

11.4 Abstract machines as logic programs

In this section, we will describe a small-step abstract machine that adequately implements
the search behavior described in Section 11.3.2. We could develop an on-paper formalism
for these abstract machines, but rather than doing that, we will encode these abstract
machines as another kind of logical specification, an ordered logical specification [165].

Like LF signatures, ordered logical specifications have a logic programming interpre-
tation, but the two interpretations are rather different. The logic programming interpre-
tation from the previous section was an instance of backward-chaining, Prolog-style logic
programming, whereas the interpretation of ordered logic specifications is a generaliza-
tion of forward-chaining, Datalog-style logic programming.

Ordered logical specifications are based on a first-order fragment of ordered linear
logic [173], a substructural logic disallowing weakening, contraction, and exchange that
dates back to Lambek’s categorial grammars [130]. For the fragment we will consider in
this section, we only need to think of ordered logical specifications as a peculiar syntax for
string rewriting rules. Informally, the proposition S1 • S2 is a pattern describing concate-
nation: if the string ∆1 matches the pattern S1 and the string ∆2 matches the pattern S2,
then the string∆1∆2 matches the pattern S1 •S2. Informally, the proposition S1� {S2} is

1Twelf can specify this proof strategy by declaring the predicate ev to be deterministic. Prolog, along with
most other logic programming languages, can specify this search strategy by using what are called cuts.
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hd left left right left left right right right
left hd left right left left right right right
left left hd right left left right right right

left hd left left right right right
left left hd left right right right
left left left hd right right right

left left hd right right
left hd right

hd

Figure 11.3: Example trace of the ordered logical specification for a PDA

a string rewriting rule2: if the string∆1 matches the pattern S1 and the string∆2 matches
the pattern S2, then this rule enables the transition step ∆L∆1∆R ∆L∆2∆R.

We will illustrate ordered logical specifications first with a very simple example taken
from [199]. Consider a push-down automaton (PDA) that reads a string of symbols left-to-
right while maintaining and manipulating a separate stack of symbols. We can represent
any configuration of the PDA as a string with three regions:

[ the stack ] [ the head ] [ the string being read ]

where the symbols closest to the head are the top of the stack and the symbol waiting
to be read from the string. If we represent the head as a token hd, represent the open
parenthesis “(” with the token left, and represent the closed parentheses “)” with the
token right, then we can describe the behavior of a single-state push-down automaton for
checking the proper nesting of parentheses with two rules:

push: hd • left� {left • hd}
pop: left • hd • right� {hd}

The first rule, push, lets us rewrite the string (∆L hd left∆R) to the string (∆L left hd∆R).
The second rule, pop, lets us rewrite the string (∆L left hd right∆R) to the string (∆L hd∆R).
The distinguishing feature of these rewriting rules is that they are local – they do not men-
tion the entire stack or the entire string, just the relevant fragment of the beginning of the
string and the top of the stack.

Execution of the PDA on a particular string of tokens then consists of (1) appending
the token hd to the beginning of the string, (2) repeatedly performing rewritings until
no more rewrites are possible, and (3) checking to see if only a single token hd remains.
Figure 11.3 presents the series of states that arise from executing the PDA on the string
“(()(()))”. The hd atomic proposition is underlined for emphasis.

Within an appropriately-designed ordered logical framework, it is possible to treat
these sequences of rewriting rules as formal artifacts; we say that there is a step ∆1 ∆2
if there is a single rule that allows us to rewrite the string ∆1 to the string ∆2, and we
say that there is a trace ∆1 ∗ ∆2 if it is possible to rewrite the string ∆1 to the string ∆2
with a series of zero or more steps. It is possible to assign proof terms to traces analogous
to the proof terms we assigned to derivations [198], but we will not consider this here.

2We use {·} for the lax modality of SLS [198]. For our purpose here, the notation can be regarded as part of
the implication syntax.
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In general, ∆ may have more interesting structure than the simple sequences we con-
sider here. We will call these objects process states [80], as they encode the state of some
evolving system (such as a push-down automata). Formally, these process states are the
hypothetical contexts of ordered linear logic.

11.4.1 Execution

We will now create an ordered logical specification that encodes the search procedure
from Section 11.3.2.

As in the PDA example, we will use a stack encoded as a series of propositions. For
reasons of presentation, the ordering of the stack will be reversed, and so this stack will
be modified by adding and removing propositions from the left-hand-side of the stack –
in the PDA example, the top of the stack was its right-hand side.

The general idea is that a trace (eval(ðeñ)∆ ∗ retn(ðvñ)∆) indicates the presence of
a derivation e ⇓ v, so the left-most proposition in ∆, if any, represents a continuation that
spawned the evaluation of e and needs to receive a v to continue. We import expressions
(terms of type exp) from the LF encoding, and define two atomic propositions eval(ðeñ)
and retn(ðvñ), both of which take an argument of type exp.

Describing the execution behavior of the evlam rule is simple: we start in the state
eval(ðλx .eñ) ∆. Because λx .e ⇓ λx .e is immediately derivable, we can step immediately
to retn(ðλx .eñ) ∆.

evlam: eval (lam λx . E x)� {retn (lam λx . E x)}.

The interpretation of the evapp rule requires some extra machinery. If we are in a state
eval(ðe1 e2ñ) ∆, then the search procedure from Section 11.3.2 indicates that we first
should search for a v1 such that e1 ⇓ v1. In terms of our abstract machine, this translates
to picking a ∆′ and trying to find a trace eval(ðe1ñ) ∆′ ∗ retn(ðv1ñ) ∆′. We introduce a
new atomic proposition cont_app1(ðe2ñ) that stores e2 in on the top of the continuation
stack, letting ∆′ = cont_app1(ðe2ñ) ∆, while we attempt to evaluate e1 to a value.

evapp: eval (app E1 E2)� {eval E1 • cont_app1 E2)}.

If we ever complete a trace of this form:

eval(ðe1ñ) cont_app1(ðe2ñ) ∆
 ∗ retn(ðv1ñ) cont_app1(ðe2ñ) ∆

then we know there is a proof of e1 ⇓ v1. Once that happens, we can proceed to check
that v1 has the form λx .e and evaluate e2 to a value, storing the body of the function
λx .e in another new atomic proposition cont_app2(λx .ðeñ). Note that this slight abuse
of notation indicates that ðeñ is the encoding of e where x can occur free; the domain of
cont_app2 is exp→ exp.

evapp1: retn (lam λx . E x) • cont_app1 E2
� {eval E2 • cont_app2 (λx . E x)}.

Finally, once a value v2 returns to the left of the proposition cont_app2(λx .ðeñ), we know
that in order to prove e1 e2 ⇓ v it suffices to prove e[v2/x] ⇓ v.
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eval(ð(λx .x) (λy.y y)ñ)
eval(ðλx .xñ) cont_app1(ðλy.y yñ)
retn(ðλx .xñ) cont_app1(ðλy.y yñ)
eval(ðλy.y yñ) cont_app2(λx .ðxñ)
retn(ðλy.y yñ) cont_app2(λx .ðxñ)
eval(ðλy.y yñ)
retn(ðλy.y yñ)

Figure 11.4: Terminating evaluation of (λx .x) (λy.y y)

eval(ð(λx .x x) (λy.y y)ñ)
eval(ðλx .x xñ) cont_app1(ðλy.y yñ)
retn(ðλx .x xñ) cont_app1(ðλy.y yñ)
eval(ðλy.y yñ) cont_app2(λx .ðx xñ)
retn(ðλy.y yñ) cont_app2(λx .ðx xñ)
eval(ð(λy.y y) (λy.y y)ñ)
. . .

Figure 11.5: Nonterminating evaluation of (λx .x x) (λy.y y)

eval(ð(λx . junk x) (λy.y)ñ)
eval(ðλx . junk xñ) cont_app1(ðλy.yñ)
retn(ðλx . junk xñ) cont_app1(ðλy.y yñ)
eval(ðλy.yñ) cont_app2(λx .ðjunk xñ)
retn(ðλy.yñ) cont_app2(λx .ðjunk xñ)
eval(ðjunk (λy.y)ñ)
eval(ðjunkñ) cont_app1(ðλy.yñ)

Figure 11.6: Evaluation of (λx . junk x) (λy.y), which goes wrong

evapp2: retn V2 • cont_app2 (λx . E x)� {eval (E V2)}.

This completes our description of the search procedure from Section 11.3.2 as an or-
dered logical specification. Examples of this search procedure encoding evaluations that
succeed, diverge, and go wrong are shown, respectively, in Figure 11.4, Figure 11.5, and
Figure 11.6. In Section 11.5, we see that this specific abstract machine can be derived
from the LF encoding of the natural semantics by a general compilation procedure from
Horn clause logic programs to ordered logical specifications.

11.4.2 Encoding

Now that we have described an operational semantics for proof search as an ordered
logical specification, we can observe that this ordered logical specification adequately
encodes the abstract machine semantics in Figure 11.2, following the methodology used
by Cervesato et al. [42] and Schack-Nielsen [183].
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ððk . eññ= eval(ðeñ) ððkññ
ððk / vññ= retn(ðvñ) ððkññ
ððhaltññ= ·
ððk;� e2ññ= cont_app1(ðe2ñ) ððkññ

ððk; (λx .e)�ññ= cont_app2(λx .ðeñ) ððkññ

Figure 11.7: Encoding of abstract machine states

We are trying to encode states of our abstract machine as process states in ordered
logic. This encoding is defined by the functions ððsññ and ððkññ given in Figure 11.7, where
s is an abstract machine state, either k.e or k/v. (Returning a value to k = halt represents
a successfully completed computation.)

The strategy that we present here does not establish a one-to-one correspondence be-
tween abstract machines and process states, as we can talk about process states such as:

cont_app2(λx .ðxñ) eval(ðλx .xñ) cont_app2(λx .ðxñ)

that do not correspond correctly to abstract-machine states. As a result, the statement of
adequacy must be slightly different.3

Theorem 128 (Preservation of adequacy for the abstract machine). If ððsññ   ∆, then
there exists a unique s′ such that ððs′ññ=∆.

Proof. By case analysis on all possible transitions under the rules in Section 11.4.1.

Theorem 129 (Adequacy for the abstract machine).
ððsññ   ððs′ññ iff s 7→ s′.

Proof. Both directions are established by case analysis: the reverse direction by case anal-
ysis on the definition in Figure 11.2, and the forward direction by case analysis on all
possible transitions under the rules in Section 11.4.1.

11.4.3 Correctness

Just as the ordered logical specification in Section 11.4.1 can be derived from the natural-
semantics specification in Section 11.3.1 by the compilation procedure for logic programs
given in Section 11.5, the correctness properties in this section follow from the correctness
of that compilation procedure, along with the relevant adequacy theorems.

For any pair of a natural semantics and an abstract machine we need two adequacy
theorems: the adequacy theorem that mediates between the natural semantics and the
LF specification, and the adequacy theorem that mediates between the ordered logical
specification and the abstract machine.

Theorem 130 (Success). e ⇓ v if and only if halt . e 7→∗ halt / v.

3An alternate approach, which allows for a one-to-one correspondence between abstract machine states and
process states, is described in [198, Chapter 4]. This is beyond the scope of this paper, however.
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Proof. For the forward direction, adequacy (Theorem 127) gives us a term N such that
· ` N : evðeñðvñ, and completeness of the compilation procedure (Theorem 134 from
Section 11.5.1 below) gives us a trace eval(ðeñ)  ∗ retn(ðvñ). Then, adequacy (Theo-
rem 129) gives us an abstract-machine trace halt . e 7→∗ halt / v.

The backward direction is analogous, but using soundness of the compilation proce-
dure (Theorem 133 from Section 11.5.1 below) instead of completeness.

From the successful execution of the ordered logical specification, we can therefore
conclude that a proof in the natural semantics exists. The converse is not true in gen-
eral. If a specification is nondeterministic (as discussed later in Section 11.6) it could
be possible for the non-backtracking execution of the ordered logical specification to di-
verge and/or get stuck when nondeterminism is resolved in one way but to succeed when
nondeterminism is resolved in a different way.

Given that our particular running example is, in fact, deterministic, we can make some
slightly stronger statements about the relationship between our natural semantics and
divergence and stuck states in the abstract machine.

Theorem 131 (Divergence). If halt . e 7→∞ then there is no v such that e ⇓ v.

Theorem 132 (Going wrong). If halt . e 7→∗ s 67→, then either s = halt / v or there is no v
such that e ⇓ v.

Proof. In both cases, the proof is by refutation: if there were a derivation of e ⇓ v, then
we would have an abstract machine trace halt . e 7→∗ halt . x by Theorem 130; this trace
must differ from the trace that diverges or goes wrong at some point, which contradicts
the determinism of CBV evaluation.

11.5 The logical correspondence

In this section, we will consider general transformations from Horn-clause logic programs
to ordered logical specifications, and we will consider other transformations from ordered
logical specifications to other ordered logical specifications. The composition of these
transformations allows us to derive our abstract machine specification directly from our
natural-semantics specification.

We begin by giving a more formal summary of both of our primary objects of interest:
LF signatures on one hand, and ordered logical specifications on the other. We make cer-
tain issues, such as universal quantification, more explicit. Nevertheless, this is intended
only to be a high-level overview and not a complete introduction.

LF signatures An LF signature ΣLF is defined as in [109], but we will deal with a
restricted set of signatures here. First, because LF merrily conflates types that are intended
to be interpreted as first-order data and types that are intended to be interpreted as logic
programs, we will disambiguate the two by distinguishing the atomic LF types intended
to be relevant to logic programming. We will call the types relevant to logic programming
the propositions, and call the non-proposition types the pure LF types; pure LF terms are
just terms of pure LF type. Propositions depend on pure LF types, but pure LF types must
be independent of propositions.4

4This restriction is just a use-case of the theory of subordination [212].
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11. A logical correspondence between abstract machines and natural semantics

Atomic propositions Q have the form (a N1 N2), where N1 and N2 must have some
particular LF types A1 and A2, respectively.

Constructors of propositions are called rules and have the form

c: ∀x1:A1. . . . ∀xn:An.Qk → . . .→Q1→ a N−0 N+k+1

where the Ai are all pure LF types and where Q i = ai N+i N−i .5 The subscripts indicate
the order in which the logic programming interpretation considers each term. The super-
scripts indicate the operational interpretation of atomic propositions as nondeterministic
partial functions: plus designates input, and minus designates output. The rule that we
would write in Twelf as:

rule: aXZ← bXY← cYZ

is reconstructed by Twelf into an LF signature declaration:

rule: ∀x:A1.∀y:A2.∀z:A3. c y z→ b x y → a x z

for some pure LF types A1, A2, and A3.
Rules must be well-moded which allows us to interpret a N1 N2 as a partial function

from terms N1 of type A1 to terms N2 of type A2. In a rule, such as c above, each of the
variables x must appear in one of the k+1 atomic propositions (that is, in one of the Q i or
in the head (a N−0 N+k+1)). Furthermore, whenever a variable x i occurs in N+i (or occurs in
a non-strict6 position in N−i ), there must be a N−j such that j < i where x i occurs strictly.

Ordered logical specifications An ordered logical specification ΣO is similar to an LF
signature; all the pure LF types and constants of an LF signature can also be contained
in an ordered logical specification. An ordered logical specification also declares ordered
propositions P = p N , where N has some particular pure LF type A, and clauses which are
defined in ordered logic according to the following BNF grammar:

Clauses D ::= ∀x:A.D | S� {H}
Heads H ::= P | H •H | D
Goals S ::= P | S • S

Implicitly quantified variables work the same in ordered logical specifications as they did
in LF: they are universally quantified on the outside. When we do write universal quanti-
fiers explicitly in the examples below, we will omit the pure LF type annotation A, writing
∀x .D instead of ∀x:A.D, as the type will always be clear from the context.

This language of ordered logical specifications has one significant addition relative
to the language discussed in Section 11.4 and in [165], justified by the development in
[198, Chapter 4]: we allow nested specifications where clauses appear in the heads of
other clauses. These clauses can then appear in the context: a clause P � {P ′ • D}, when
it appears in the context, is a token that cannot satisfy any subgoal. Instead, it can only
react to the presence of the ordered proposition P immediately to the clause’s left. That is,
the process state ∆L P (P � {P ′ • D}) ∆R can rewrite to the process state ∆L P ′ D ∆R.
Figure 11.8 gives another example evolution.

5LF has one proposition, Πx:A.A′, that acts as both a universal quantifier ∀x:A.A′ (when x is free in A′) and as
implication A→ A′ (when x is not free in A′).

6Strictness is defined in [163]; it is important in general, but is not relevant to our examples, so we omit a
precise definition in this paper.
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p2(c) p1(c) (∀x . p1(x)� {p2(x)� {p3(x)}}) (p3(c)� {p4})
p2(c) (p2(c)� {p3(c)}) (p3(c)� {p4})

p3(c) (p3(c)� {p4})
p4

Figure 11.8: Evolution of a process state containing nested rules

11.5.1 Operationalization

We translate a LF signature ΣLF into an ordered logical specification ΣO as follows. The
pure LF types and constants remain unchanged. For each defined proposition a that takes
an input argument of type A1 and an output argument of type A2, we define two ordered
propositions in the ordered logical specification: eval_a, which takes an argument of type
A1, and retn_a, which takes an argument of type A2.

Every rule in the LF signature gets translated into a clause in the ordered logical spec-
ification. Given a rule:

c: ∀x1:A1. . . . ∀xn:An.Qk → . . .→Q1→ a N−0 N+k+1

where each Q i = ai N+i N−i , let ∀xsi.D for 0 ≤ i ≤ k be a shorthand for writing a uni-
versal quantifier for each variable free in N−i that is not free in N−j for j < i. Then, the
corresponding clause in the ordered logical specification is:

c: ∀xs0. eval_a N−0 � {¹Q1, . . . ,Qkº(a, N+k+1, id)}

where the function ¹Argsº(a, N+k+1,σ) is defined as follows:

¹º(a, N+k+1,σ) = retn_a(Nk+1σ)

¹(ai N+i N−i ), Argsº(a, N+k+1,σ) =
eval_ai(N

+
i σ)•

(∀xsi. retn_ai(N
−
i σ)� {¹Argsº(a, N+k+1,σ)})

Substitutions are partial, and id is just the empty substitution that leaves terms unchanged.
If we were instead describing total substitutions, when we write σ in the recursive call
above, we would instead need to write (σ, xsi/xsi) to emphasize that the substitution
accepts all the variables in xsi and returns them unchanged. Substitutions other than the
identity substitution only come up as intermediate stages in the correctness proof.

The following is the output of this transformation on our running example, except that
we leave outermost universal quantifiers implicit and just write eval and retn instead of
eval_ev and retn_ev.

evlam: eval (lam λx . E x)� {retn (lam λx . E x)}.
evapp: eval (app E1 E2)

� {eval E1 •
(∀e. retn (lam λx . e x)
� {eval E2 •

(∀v2. retn v2
� {eval (e v2) •

(∀v. retn v � {retn v})})})}.
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11. A logical correspondence between abstract machines and natural semantics

Tail-recursion optimization

The rule evapp under the operationalization transformation contains an innermost clause,
∀v. retn v � {retn v}, that is essentially just the identity. It corresponds to the last stage
in our proof search procedure where we searched for a v such that e[v2/x] ⇓ v – upon
success, we could successfully return a v such that e1 e2 ⇓ v.

In work on the functional correspondence, it would be possible to observe at this point
that this last call is tail-recursive. We can do the same in our logical correspondence,
modifying this rule to be explicitly tail-recursive.

evapp: eval (app E1 E2)
� {eval E1 •

(∀e. retn (lam λx . e x)
� {eval E2 •

(∀v2. retn v2 � {eval (e v2)})})}.

Such a modification on general ordered logical specifications is complete but is not
sound in general, because these identity-like propositions can get in the way of other
possible transitions. For instance, the following cannot transition to d:

a (a� {b • (c� {c})}) (b� {d}) 6 ∗ d

whereas if we “tail-call optimize” the (c� {c}) proposition, we can transition all the way
to d:

a (a� {b}) (b� {d})  b (b� {d})  d

Essentially the same behavior can arise in ordered logical specifications that come from
our compilation procedure, though the problem is at the level of terms, not types. The
clause that results from compiling the rule aX false ← bXY ← aY false contains the
head (eval_a(y) • (retn_a(false)� {retn_a(false)})), which must be preserved so that
the search fails if the subgoal returns true instead of false. It is sound to require that only
heads of the form (∀x .retn_a(x) � {retn_a(x)}) be optimized away, although a more
general condition is that (∀xsn.retn_a(t)� {retn_a(t)}) can be optimized as long as, for
any well-typed term t ′, there exists a substitution σ such that t ′ = tσ.

Tail-call optimization can be represented by extending the definition of the operational-
ization function as follows:

¹(an N+n N−n )º(a, N+k+1,σ) = eval_a(N+n σ)

If retn_an = retn_a and N−n = N+
k+1
= x , where x ∈ xsn.

Note that this branch of the definition overlaps with the second branch in the previous
definition. This indicates that tail-recursion is an optimization that can be applied eagerly
or not, as desired.

Parallel evaluation

Ordered logical specifications can be used to represent parallel computations: if there is
more than one ordered proposition eval(ðeñ) or retn(ðvñ) in the process state that can
both evolve by rewriting independent portions of the process state, then we can interpret
those evolutions as happening in either order or simultaneously in parallel [165, 218].
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We can characterize parallel evaluation by further generalizing the operationalization
transformation to allow for parallel proof search in cases where the input of a rule’s
premise (the first argument N+i ) doesn’t depend on the output of the previous premise
(the second argument N−i−1). In conjunction with tail-recursion optimization, parallel op-
erationalization transforms the rule evapp into the following clause:

evapp: eval (app E1 E2)
� {eval E1 • eval E2 •

(∀e.∀v2. retn (lam λx . e x) • retn v2
� {eval (e v2)})}.

This ordered logical specification can now represent any arbitrary interleaving of the steps
that evaluate E1 and E2 to values.

We can adapt our translation to allow for parallelism by replacing the inductive case
translation with the following:

¹(ai N+i N−i ), . . . , (a j N+j N−j ), Argsº(a, N+k+1,σ) =
eval_ai(N

+
i σ) • · · · • eval_a j(N

+
j σ)•

(∀xsi. . . .∀xsj. retn_ai(N
−
i σ) • · · · • retn_a j(N

−
j σ)

� {¹Argsº(a, N+k+1,σ)})
If FV(N+k )∩ (xsi ∪ · · · ∪ xsj) = ; for i ≤ k ≤ j.

The previous inductive case is simply the special case for i = j, in which case the side
condition is trivially satisfied.

Correctness

The correctness proofs for the compilation of LF signatures into abstract machines in an
ordered logical specification are structured much like proofs of equivalence between a nat-
ural semantics and an abstract machine and can be found in the first author’s thesis [198,
Chapter 6].

Theorem 133 (Soundness). Given a trace eval_a(N+) ∗ retn_a(N−) in an ordered logical
specification compiled from an LF signature, there exists an M such that · ` M : a N+ N− in
the LF signature.

Theorem 134 (Completeness). If · ` M : a N+ N− in an LF signature, then eval_a N+ ∆ ∗
retn_a N− ∆ in the compiled ordered logical specification.

The soundness and completeness theorems give a very strong connection between logic
programs written as LF signatures and the ordered logical specifications that implement
non-backtracking proof search.

11.5.2 Defunctionalization

The final modification we need to make in order to get the SSOS specification from Sec-
tion 11.4 is defunctionalization, which takes ordered logical specifications with deeply
nested clauses like evapp and produces flat specifications where every clause has the form
∀x . P1 • . . . • Pn� {P ′1 • . . . • P ′n}.

Whenever we have a clause like (∀x . p1(x) � {p2(f (h x)d)}) in the process state,
we can replace it with a fresh atomic proposition newprop as long as we simultaneously
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extend the signature with a new clause (∀x . p1(x) • newprop� {p2(f (h x)d)}). The key
to defunctionalization is to observe that the revised specification can evolve in lock-step
with the original one. Whenever the in-context clause can step by consuming a proposition
p1(N) (for some N) to its left, the new clause can take an analogous step by consuming
p1(N) to the left of newprop in the process state. The reverse holds as well.

We can furthermore give the fresh atomic proposition arguments: if for example∀x .p1•
newprop(x)� {p2(x)} appears in an ordered logical specification, then an atomic propo-
sition newprop(N), for some fresh atomic proposition newprop and term N , will behave
the same way as the clause (p1� {p2(N)}) would behave in the same place.

These observations allow us to defunctionalize the nested evapp from Section 11.5.1
(tail-recursion optimized, but not parallel) in two steps. For example, the nested clause
(∀e. retn(lamλx . e x) � . . .) has E2 free, so we introduce a fresh atomic proposition
cont_app1 that stores the free variable, here E2 of type exp:

evapp: eval (app E1 E2)� {eval E1 • cont_app1 E2}.
evapp1: retn (λx . E x) • cont_app1 E1

� {eval E2 • (∀v2. retn v2 � {eval (E v2)})}.

The remaining nested clause has only E free, so we defunctionalize this remaining clause
by introducing a fresh atomic proposition cont_app2 that stores the free variable, here E
of type exp→ exp:

evapp: eval (app E1 E2)� {eval E1 • cont_app1 E2}.
evapp1: retn (λx . E x) • cont_app1 E1

� {eval E2 • cont_app2 (λx . E x)}.
evapp2: retn V2 • cont_app2 (λx . E x)� {eval (E V2)}.

The result is precisely the abstract-machine specification as defined in Section 11.4. The
correctness follows by a straightforward lock-step bisimulation [198, Chapter 6]

11.5.3 Implementation

We have implemented7 the operationalization and defunctionalization transformations
(with tail-recursion optimization but without parallel evaluation, though this would be a
minor extension). Rather than a transformation from LF specifications to ordered logical
specifications, the transformations are implemented within a framework, SLS [198], that
conservatively extends both LF and the ordered logical framework from [165] in the style
of CLF [218].

To evaluate the correspondence and the implementation we have encoded and trans-
formed some existing and non-trivial semantics, including temporal logic and storeless
call-by-need evaluation.

The natural semantics for storeless call-by-need evaluation is taken from Danvy et
al. [77, Figure 8]. It is defined by several mutually inductive definitions and makes use of
non-trivial control. The result of the logical correspondence produces a substructural op-
erational semantics that, after a fold/unfold transformation [157], adequately represents

7A tarball of the implementation is submitted in the supplemental materials; a repository with the current
implementation can be found at
https://github.com/robsimmons/sls.
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the abstract machine in Figure 7 from the same paper. The storeless call-by-need evalua-
tion implementation can be found in the source distribution under examples/storeless-cbneed/.

Operationalization and defunctionalization do not apply only to natural-semantics
specifications, but to arbitrary Horn-clause logic programs. In course notes, Pfenning
presented both an ordered logical specification and backward-chaining logic program-
ming specification of binary addition [162]. These two specifications can be related by
operationalization, defunctionalization, and a fold/unfold transformation similar to the
one needed in the storeless call-by-need example; the results can be found in the source
distribution under examples/addition/.

The natural semantics for Davies’s Mini-ML} language extends a functional Mini-ML
core language with support for staged computation as a Curry-Howard interpretation of
temporal logic [78]. There are two judgments in the natural-semantics specification of
Mini-ML}: the usual judgment e ⇓ v that evaluates expressions at time 0 and a judgment
e ⇓n e′ that searches through an expression that will be evaluated at time n looking for
evaluation that must be done now, at time 0. This example illustrates how operational-
ization can be applied partially to a specification. In this case, only evaluation at time
0 is operationalized. The implementation can be found in the source distribution under
examples/temporal/.

11.6 Nondeterminism

A major theme of this paper is that the operationalization transformation allows us to
reason formally about what it means for evaluation in a natural-semantics specification to
diverge or go wrong. The evaluation of e diverges if for all traces eval(ðeñ) ∗ ∆, there is
a ∆′ such that ∆ ∆′. The evaluation of e goes wrong if for some trace eval(ðeñ) ∗ ∆,
there is no v such that ∆ = retn(ðvñ), and there is no ∆′ such that ∆  ∆′. In this way,
operationalization gives us an accessible notion of what it means to prove progress and
preservation for a natural-semantics specification.

While this interpretation is the one we want, the use of this interpretation requires
that we change the way we write some natural-semantics specifications. This is the usual
natural semantics of Boolean values and if-statements:

tt ⇓ tt ff ⇓ ff

e ⇓ tt et ⇓ v
if e then et else e f ⇓ v

e ⇓ ff e f ⇓ v

if e then et else e f ⇓ v

This natural semantics describes a deterministic language, but only when we think about
complete proofs: for each e there is at most one v such that e ⇓ v. At the level of proof
search, when we consider an expression if e then et else e f there are two rules that apply.
One rule predicts that e evaluates to true, the other predicts that e evaluates to false, and
only one rule can be considered first. A backtracking logic-programming interpretation of
these rules will recover from a mistaken branch prediction and attempt to apply the other
rule; this reevaluates the scrutinee e but is otherwise harmless.

The operationalization transformation reflects a non-backtracking interpretation of
proof search. Therefore, if we operationalize these rules directly, it is always possible
to find a trace starting from eval(ðif e then et else e f ñ) that is not a final return value and
cannot be extended, which was our criteria for going wrong. This appears to be a problem;
however, for languages that are actually deterministic, it is possible to rewrite the natural-
semantics specification so that the result of operationalization is also deterministic. We
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can revise the specification above with the introduction of a new judgment (v′, et , e f ) ⇓? v
that picks the correct branch of a case statement:

e ⇓ v′ (v′, et , e f ) ⇓? v

if e then et else e f ⇓ v

et ⇓ v

(tt, et , e f ) ⇓? v

e f ⇓ v

(ff, et , e f ) ⇓? v

This specification is equivalent to the previous one at the level of complete derivations.
This revision can be seen as an instance of the factoring transformation that has been
expressed by Poswolsky and Schürmann as a transformation on functional programs in a
variant of the Delphin programming language [174]. Furthermore, this style of natural
semantics independently arises through the functional correspondence as illustrated by,
e.g., the call-by-need natural semantics implemented in Section 11.5.3.

Fundamentally, the issue is that natural semantics do not fully specify the operational
behavior of specifications, and different operational interpretations can change the mean-
ing of natural-semantics specifications. This phenomena was observed in the early work
on natural semantics by Clement et al., where they questioned when it is appropriate to
assign a relational interpretation (backtracking proof search) or a functional interpreta-
tion (non-backtracking proof search) to judgments [45, Section 7]. The choice makes a
difference in how we interpret natural-semantics specifications. Take the following non-
deterministic specification, for instance:

e1 ⇓ v
e1 }? e2 ⇓ v

e2 ⇓ v
e1 }? e2 ⇓ v

Under the non-backtracking or functional interpretation provided by operationalization,
this represents a nondeterministic choice that is resolved at runtime and never reconsid-
ered: if either choice goes wrong, then the entire evaluation might go wrong. Under the
relational or backtracking interpretation, this operator represents angelic choice, in which
nondeterminism must be resolved in a way that avoids stuck computations. Therefore, if
we evaluate junk}? v, the computation can only evaluate to v. The option of getting stuck
can only be represented by introducing an additional getting stuck judgment, it cannot be
represented by the absence of a derivation junk}? v ⇓ v, as such a derivation exists.

Incidentally, the coinductive interpretation of Leroy and Grall is closely connected with
the backtracking interpretation. Therefore, the safety theorem they prove – if e has type
τ then either e ⇓ v or e ⇓∞ – will hold for well-typed expressions that go wrong, but only
under certain resolutions of nondeterministic choice. This suggests that the operational-
ization transformation, and non-backtracking search in general, is a better interpretation
if reasoning about language safety, especially in the presence of nondeterminism.

11.7 Perspectives

In this section, we put into perspective the logical correspondence with a number of po-
tential applications. In many cases these are straightforward applications of preexisting
techniques.

11.7.1 Safety theorems for typed languages

The informal statement of safety for a natural semantics in our setting is similar to the
statement of safety in coinductive big-step operational semantics: if e has type τ, then the
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proof search procedure for a v such that e ⇓ v will either diverge or succeed. Our method-
ology allows us to state soundness with respect to the ordered logical specification: if e
has type τ and eval(ðeñ)  ∗ ∆, then either ∆ = retn(ðvñ) for some v or ∆   ∆′. In
previous work, the first author details a methodology for describing type safety for sub-
structural operational semantics in ordered logic [198], and this methodology applies to
the outputs of our compilation procedure. Therefore, the logical correspondence between
natural semantics and abstract machines gives an approach for proving small-step safety
for big-step operational semantics.

11.7.2 Linear destination passing style

Simmons and Pfenning describe a translation from ordered logical specifications to lin-
ear logical specifications that adds parameters, called destinations, to all ordered atomic
propositions [199]. These destinations act as abstract pointers and replace information
which, in ordered logic, is represented implicitly by the structure of the context. These des-
tinations are semantically relevant in substructural operational semantics specifications of
first-class continuations.

Just as substructural operational semantics in ordered logic predated the logical cor-
respondence we present here, the destination-passing style predates the transformation
that gives rise to destinations [42]; these two transformations can be composed to relate
natural semantics directly to substructural operational semantics specifications in a lan-
guage, like CLF, that implements linear logical specifications. The Celf implementation of
CLF, unlike the current SLS prototype, implements proof search and can therefore be used
to animate substructural operational semantics specifications [184].

11.7.3 Abstracting (logical) abstract machines

Simmons and Pfenning also discuss an approximation strategy for linear logical specifica-
tions [199] that mirrors Might and Van Horn’s Abstracting Abstract Machines methodology
[211] in a logical setting.

The starting point for that paper’s logical derivation of a control flow analysis is a sub-
structural operational semantics much like the one we derive from the natural semantics
in this work. One difference – the use of an environment semantics instead of the direct
substitution of values into λ-expressions – is discussed in [165] but has not been described
as a general, provably-correct program transformation. The other difference between the
substructural operational semantics described in [199] and the one given here is that the
former semantics did not include the tail-recursion optimization. This change was needed
in order to expose more information to the control flow analysis; while the difference was
difficult to motivate and explain in [199], given the logical correspondence that we have
presented here, it is simple and intuitive.

Therefore, between these two papers we have very nearly described a connection be-
tween natural semantics for a call-by-value λ-calculus and a control flow analysis for the
call-by-value λ-calculus entirely in terms of generally applicable, provably-correct pro-
gram transformations. The only missing piece is a general connection between ordered
logical specifications with substitution to ordered logical specifications using environment
semantics as described in [165].

257



11. A logical correspondence between abstract machines and natural semantics

11.7.4 Partial inverses of compilation

In some respects, the transformation from a more abstract natural semantics to a more
concrete abstract machine semantics is the less interesting direction; a partial inverse of
our compilation function would derive a natural-semantics specification directly from an
abstract machine semantics. This backward translation from ordered logical specifications
to LF signatures might even expose additional opportunities for parallelism which could be
utilized as discussed above in Section 11.5.1. Such a procedure would presumably be very
partial. It is easy to describe the LF signatures which can be compiled to ordered logical
specifications – those that are limited to Horn clause logic programs. It is not so obvious
how to characterize those ordered logical specifications that can be de-compiled into an
LF signature, except by characterizing them as being in the image of our compilation
procedure.

It is also interesting to contemplate the natural-semantics specifications that might cor-
respond to a backwards translation of an ordered logical specification that utilizes linear
resources. Linear resources in ordered logical specifications are not bound to a particular
part of the process state, and can be used to represent stateful features of programming
languages like mutable storage. Presumably the natural-semantics specification corre-
sponding to a stateful ordered logical specification would be akin to a natural semantics
version of modular structural operational semantics, a formalism which gracefully ac-
counts for stateful features in SOS-style presentations [150].

11.8 Conclusion

We have shown how to mechanically construct an abstract machine semantics from a
natural semantics. Our construction is based on backward-chaining proof search and
formalized as an operationalization transformation on logical specifications.

It is our thesis that this logical correspondence provides a direct, consistent, and useful
account of adequate representations for operational semantics. Direct because the repre-
sentations are in one-to-one correspondence with their informal counterparts, i.e., what
we would typically write by hand; consistent because the representations are internally
compatible with each other; and useful because the representations are independently
sought after. Furthermore, as illustrated by the present work, the interpretations are ap-
plicable to a wide range of uses such as abstract interpretation and type safety.

This logical correspondence provides a means by which we can resolve the tension be-
tween different styles of operational semantics. Following the methodology of the func-
tional correspondence, instead of committing to a particular semantic specification and
style or inventing several we should rather inter-derive them. Here we have shown a
logical justification of this method.

In this work, we have leveraged existing logics and methods for formalizing and ma-
nipulating semantics descriptions. Combined, these logics and methods provide a corre-
spondence that is mechanical and of which we have given a prototype implementation.
Other systems exist within this area and provide specialized support for formalizing and
manipulating particular styles of semantics. Notable examples include the K Semantic
Framework [182], LNgen [18], and PLT Redex [89]. To the best of our knowledge, no
existing framework provides built-in support for working with several different seman-
tics styles as done here, let alone support for automatically inter-deriving them. Future
work would be to further develop SLS as a unified logic enabling across-the-board support
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for formalizing, mechanizing and reasoning about semantics specifications by means of
inter-derivation. It is our hope to encourage a more systematic investigation of logical
correspondences in programming-language semantics, an area which has thus far been
given only piecemeal treatment (as in Hannan and Miller’s work [106]). One starting
point is extending this logical correspondence to the multitude of small-step operational
semantics treated by Biernacka and Danvy [27].

259





Bibliography

[1] Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer, 1996. 48, 62

[2] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction
for pcf. Information and Computation, 163(2):409–470, 2000. 7

[3] Mads Sig Ager. From natural semantics to abstract machines. In Sandro Etalle,
editor, Logic Based Program Synthesis and Transformation, 14th International Sym-
posium, LOPSTR 2004, revised selected papers, number 3573 in Lecture Notes in
Computer Science, pages 245–261, Verona, Italy, August 2004. Springer. 242

[4] Mads Sig Ager. Partial Evaluation of String Matchers & Constructions of Abstract
Machines. PhD thesis, BRICS PhD School, Department of Computer Science, Aarhus
University, Aarhus, Denmark, January 2006. 4

[5] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Dale Miller, editor,
Proceedings of the Fifth ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’03), pages 8–19, Uppsala, Sweden, Au-
gust 2003. ACM Press. 47, 94, 109, 152, 159, 173, 204, 237, 239, 241

[6] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. From in-
terpreter to compiler and virtual machine: a functional derivation. Technical Re-
port BRICS RS-03-14, Department of Computer Science, Aarhus University, Aarhus,
Denmark, March 2003. 179

[7] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence be-
tween call-by-need evaluators and lazy abstract machines. Information Processing
Letters, 90(5):223–232, 2004. Extended version available as the research report
BRICS RS-04-3. 47, 126, 149, 159, 162, 173, 178, 241

[8] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between monadic evaluators and abstract machines for languages with compu-
tational effects. Theoretical Computer Science, 342(1):149–172, 2005. Extended
version available as the research report BRICS RS-04-28. 47, 241

261



Bibliography

[9] Konrad Anton and Peter Thiemann. Towards deriving type systems and imple-
mentations for coroutines. In Kazunori Ueda, editor, Programming Languages and
Systems – 8th Asian Symposium, APLAS 2010, number 6461 in Lecture Notes in
Computer Science, pages 63–79, Shanghai, China, December 2010. Springer. 48,
62, 73

[10] Konrad Anton and Peter Thiemann. Typing coroutines. In Rex Page, Zoltán
Horváth, and Viktória Zsók, editors, Trends in Functional Programming, volume
6546 of LNCS, pages 16–30. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-
22940-4. 48, 62, 239

[11] Zena M. Ariola and Arvind. Properties of a first-order functional language with
sharing. Theoretical Computer Science, 146(1&2):69–108, 1995. 188, 237

[12] Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus. Journal
of Functional Programming, 7(3):265–301, 1997. 126, 129, 130, 148, 158, 165,
177, 236, 262

[13] Zena M. Ariola and Jan Willem Klop. Equational term graph rewriting. Fundamenta
Informaticae, 26(3/4):207–240, 1996. 237

[14] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip
Wadler. A call-by-need lambda calculus. In Lee [135], pages 233–246. 178

[15] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip
Wadler. A call-by-need lambda calculus. In Lee [135], pages 233–246. Journal
versions available as [12] and [141]. 49, 63, 129, 158, 165, 178, 210

[16] Zena M. Ariola, Hugo Herbelin, and Alexis Saurin. Classical call-by-need and du-
ality. In Luke Ong, editor, Typed Lambda Calculi and Applications, 5th International
Conference, TLCA 2011, number 6690 in Lecture Notes in Computer Science, pages
27–44, Novi Sad, Serbia, June 2011. Springer. 179

[17] Zena M. Ariola, Paul Downen, Hugo Herbelin, and Alexis Nakata, Keiko Saurin.
Classical call-by-need sequent calculi: The unity of semantic artifacts. In Tom
Schrijvers and Peter Thiemann, editors, Functional and Logic Programming, 11th
International Symposium, FLOPS 2012, number 7294 in Lecture Notes in Computer
Science, pages 32–46, Kobe, Japan, May 2012. Springer. 4, 62, 159, 239

[18] Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally nameless
representations. Technical Report MS-CIS-10-24, University of Pennsylvania Dept.
of Computer and Information Science, June 2010. 258

[19] Thibaut Balabonski. A unified approach to fully lazy sharing. In John Field and
Michael Hicks, editors, Proceedings of the Thirty-Ninth Annual ACM Symposium on
Principles of Programming Languages, pages 469–480, Philadelphia, PA, USA, Jan-
uary 2012. ACM Press. 160

[20] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. Extensional normalisation
and type-directed partial evaluation for typed lambda calculus with sums. In Xavier
Leroy, editor, Proceedings of the Thirty-First Annual ACM Symposium on Principles
of Programming Languages, SIGPLAN Notices, Vol. 39, No. 1, pages 64–76, Venice,
Italy, January 2004. ACM Press. 148

262



Bibliography

[21] Anindya Banerjee and David A. Schmidt. Stackability in the typed call-by-value
lambda calculus. Science of Computer Programming, 31(1):47–73, 1998. 179

[22] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundation of Mathematics. North-Holland, revised edition,
1984. 126, 211

[23] Henk P. Barendregt. Functional programming and lambda calculus. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Mod-
els and Semantics, volume B, chapter 7, pages 321–364. Elsevier and The MIT Press,
1990. 190

[24] Henk P. Barendregt, Marko C. J. D. van Eekelen, John R. W. Glauert, Richard Kenn-
away, Marinus J. Plasmeijer, and M. Ronan Sleep. Term graph rewriting. In Jaco de
Bakker, A. J. Nijman, and Philip C. Treleaven, editors, PARLE, Parallel Architectures
and Languages Europe, Volume II: Parallel Languages, number 259 in Lecture Notes
in Computer Science, pages 141–158, Eindhoven, The Netherlands, June 1987.
Springer-Verlag. 4, 159, 177, 187, 188, 200, 211, 223, 224, 237

[25] Michael Beeler, R. William Gosper, and Rich Schroeppel. HAKMEM. AI Memo
239, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, February 1972. http://home.pipeline.com/~hbaker1/
hakmem/. 158

[26] Małgorzata Biernacka. A Derivational Approach to the Operational Semantics of
Functional Languages. PhD thesis, BRICS PhD School, Department of Computer
Science, Aarhus University, Aarhus, Denmark, January 2006. 4

[27] Małgorzata Biernacka and Olivier Danvy. A syntactic correspondence between
context-sensitive calculi and abstract machines. Theoretical Computer Science, 375
(1-3):76–108, 2007. Extended version available as the research report BRICS RS-
06-18. 62, 73, 94, 149, 159, 163, 170, 178, 241, 259

[28] Małgorzata Biernacka and Olivier Danvy. A concrete framework for environment
machines. ACM Transactions on Computational Logic, 9(1):1–30, 2007. Article #6.
Extended version available as the research report BRICS RS-06-3. 62, 73, 76, 78,
177, 201, 218

[29] Małgorzata Biernacka and Olivier Danvy. Towards compatible and interderivable
semantic specifications for the Scheme programming language, Part II: Reduction
semantics and abstract machines. In Palsberg [156], pages 186–206. 62, 189, 201

[30] Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foun-
dation for delimited continuations in the CPS hierarchy. Logical Methods in Com-
puter Science, 1(2:5):1–39, November 2005. A preliminary version was presented
at the Fourth ACM SIGPLAN Workshop on Continuations (CW’04). 47, 62

[31] Dariusz Biernacki. The Theory and Practice of Programming Languages with De-
limited Continuations. PhD thesis, BRICS PhD School, Department of Computer
Science, Aarhus University, Aarhus, Denmark, December 2005. 4

263

http://home.pipeline.com/~hbaker1/hakmem/
http://home.pipeline.com/~hbaker1/hakmem/


Bibliography

[32] Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by defunc-
tionalization. In Maurice Bruynooghe, editor, Logic Based Program Synthesis and
Transformation, 13th International Symposium, LOPSTR 2003, number 3018 in Lec-
ture Notes in Computer Science, pages 143–159, Uppsala, Sweden, August 2003.
Springer. 47, 241

[33] Stefan Blom. Term Graph Rewriting – Syntax and Semantics. PhD thesis, Institute
for Programming Research and Algorithmics, Vrije Universiteit, Amsterdam, The
Netherlands, March 2001. 211, 224, 236, 237

[34] Roel Bloo and Kristoffer Høgsbro Rose. Preservation of strong normalisation in
named lambda calculi with explicit substitution and garbage collection. In CSN-
95: Computer Science in the Netherlands, pages 62–72, 1995. 130

[35] Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM Symposium on
Principles of Programming Languages, Portland, Oregon, January 1994. ACM Press.
269, 270

[36] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recursive equations
with global variables and abstract data types. Science of Computer Programming,
16:151–195, 1991. 128, 220

[37] Arie de Bruin and Erik P. de Vink. Continuation semantics for Prolog with cut. In
Josep Díaz and Fernando Orejas, editors, TAPSOFT’89: Proceedings of the Interna-
tional Joint Conference on Theory and Practice of Software Development, number 351
in Lecture Notes in Computer Science, pages 178–192, Barcelona, Spain, March
1989. Springer-Verlag. 47

[38] Torsten Bülck, Achim Held, Werner E. Kluge, Stefan Pantke, Carsten Rathsack,
Sven-Bodo Scholz, and Raimund Schröder. Experience with the implementation
of a concurrent graph reduction system on an nCUBE/2 platform. In Bruno Buch-
berger and Jens Volkert, editors, Parallel Processing: CONPAR 94 - VAPP VI, number
854 in Lecture Notes in Computer Science, pages 497–508. Springer, 1994. 189

[39] Geoffrey Burn, Simon L. Peyton Jones, and J. D. Robson. The spineless G-machine.
In Robert (Corky) Cartwright, editor, Proceedings of the 1988 ACM Conference on
Lisp and Functional Programming, pages 244–258, Snowbird, Utah, July 1988.
ACM Press. 189

[40] F. Warren Burton. A linear space translation of functional programs to Turner
combinators. Information Processing Letters, 14(5):201–204, 1982. 189

[41] Robert Cartwright and Matthias Felleisen. Extensible denotational language speci-
fications. In Masami Hagiya and John C. Mitchell, editors, Proceedings of the 1994
International Symposium on Theoretical Aspects of Computer Software, number 789
in Lecture Notes in Computer Science, pages 244–272, Sendai, Japan, April 1994.
Springer-Verlag. 48, 148

[42] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concurrent
logical framework II: Examples and applications. Technical Report CMU-CS-2002-
102, Dept. of Comp. Sci., CMU, March 2002. Revised May 2003. 247, 257

264



Bibliography

[43] Stephen Chang and Matthias Felleisen. The call-by-need lambda calculus, revisited.
In Helmut Seidl, editor, Programming Languages and Systems, 21st European Sym-
posium on Programming, ESOP 2012, Lecture Notes in Computer Science, pages
128–147, Tallinn, Estonia, March 2012. Springer. 158

[44] Stephen Chang, David Van Horn, and Matthias Felleisen. Evaluating call by need on
the control stack. In Rex Page, Zoltán Horváth, and Viktória Zsók, editors, Trends in
Functional Programming, Volume 11, number 6546 in Lecture Notes in Computer
Science, pages 1–15, Norman, Oklahoma, May 2011. Springer. 179, 212

[45] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, Laurent Hascoet, and
Gilles Kahn. Natural semantics on the computer. Technical Report 416, INRIA, June
1985. 240, 241, 242, 256

[46] John Clements and Matthias Felleisen. A tail-recursive semantics for stack inspec-
tion. ACM Transactions on Programming Languages and Systems, 26(6):1029–1052,
2004. A preliminary version was presented at the 12th European Symposium on
Programming (ESOP 2003). 68

[47] William D. Clinger. Proper tail recursion and space efficiency. In Keith D. Cooper,
editor, Proceedings of the ACM SIGPLAN’98 Conference on Programming Languages
Design and Implementation, pages 174–185, Montréal, Canada, June 1998. ACM
Press. 48, 62

[48] Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The Categorical Abstract
Machine. Science of Computer Programming, 8(2):173–202, 1987. 47

[49] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002. 241

[50] Patrick Cousot and Radhia Cousot. Inductive definitions, semantics and abstract
interpretation. In Andrew W. Appel, editor, Proc. of POPL’92, pages 83–94. ACM
Press, January 1992. 241

[51] Pierre Crégut. Strongly reducing variants of the Krivine abstract machine. Higher-
Order and Symbolic Computation, 20(3):209–230, 2007. A preliminary version was
presented at the 1990 ACM Conference on Lisp and Functional Programming. 4,
47, 49, 63, 162, 177

[52] Haskell B. Curry. Apparent variables from the standpoint of Combinatory Logic.
Annals of Mathematics, 34:381–404, 1933. 237

[53] Haskell B. Curry, J. Roger Hindley, and Robert Feys. Combinatory Logic: Volume II.
North Holland, 1972. 190

[54] Nils Anders Danielsson. Operational semantics using the partiality monad. In
Robby Findler and Peter Thiemann, editors, Proc. of ICFP’12, pages 127–138,
September 2012. 241

[55] Olivier Danvy. Three steps for the CPS transformation. Technical Report CIS-92-2,
Kansas State University, Manhattan, Kansas, December 1991. 39

265



Bibliography

[56] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–
195, 1994. A preliminary version was presented at the Fourth European Sympo-
sium on Programming (ESOP 1992). 46, 103, 110, 145, 152

[57] Olivier Danvy. On evaluation contexts, continuations, and the rest of the computa-
tion. In Hayo Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN Workshop
on Continuations (CW’04), Technical report CSR-04-1, Department of Computer
Science, Queen Mary’s College, pages 13–23, Venice, Italy, January 2004. Invited
talk. 47, 101

[58] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In Clemens
Grelck, Frank Huch, Greg J. Michaelson, and Phil Trinder, editors, Implementation
and Application of Functional Languages, 16th International Workshop, IFL’04, num-
ber 3474 in Lecture Notes in Computer Science, pages 52–71, Lübeck, Germany,
September 2004. Springer. Recipient of the 2004 Peter Landin prize. Extended
version available as the research report BRICS RS-03-33. 45

[59] Olivier Danvy. From reduction-based to reduction-free normalization. In Sergio An-
toy and Yoshihito Toyama, editors, Proceedings of the Fourth International Workshop
on Reduction Strategies in Rewriting and Programming (WRS’04), volume 124(2) of
Electronic Notes in Theoretical Computer Science, pages 79–100, Aachen, Germany,
May 2004. Elsevier Science. Invited talk. 61, 62

[60] Olivier Danvy. An Analytical Approach to Programs as Data Objects. DSc thesis,
Department of Computer Science, Aarhus University, Aarhus, Denmark, October
2006. 39

[61] Olivier Danvy. From reduction-based to reduction-free normalization. In Pieter
Koopman, Rinus Plasmeijer, and Doaitse Swierstra, editors, Advanced Functional
Programming, Sixth International School, number 5382 in Lecture Notes in Com-
puter Science, pages 66–164, Nijmegen, The Netherlands, May 2008. Springer.
Lecture notes including 70+ exercises. 94, 109, 127, 138, 148, 159, 173, 179,
190, 192, 201, 211, 217, 218

[62] Olivier Danvy. Defunctionalized interpreters for programming languages. In James
Hook and Peter Thiemann, editors, Proceedings of the 2008 ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’08), SIGPLAN Notices, Vol. 43,
No. 9, pages 131–142, Victoria, British Columbia, September 2008. ACM Press.
Invited talk. 47, 61, 126, 152, 189, 190, 192, 201, 211, 241

[63] Olivier Danvy. Towards compatible and interderivable semantic specifications for
the Scheme programming language, Part I: Denotational semantics, natural se-
mantics, and abstract machines. In Palsberg [156], pages 162–185. 48, 189

[64] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand, editor,
Proceedings of the 1990 ACM Conference on Lisp and Functional Programming, pages
151–160, Nice, France, June 1990. ACM Press. 19, 47, 121

[65] Olivier Danvy and Jacob Johannsen. Inter-deriving semantic artifacts for object-
oriented programming. Journal of Computer and System Sciences, 76:302–323,
2010. 48, 62, 123, 189

266



Bibliography

[66] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations.
In William Clinger, editor, Proceedings of the 1992 ACM Conference on Lisp and Func-
tional Programming, LISP Pointers, Vol. V, No. 1, pages 299–310, San Francisco,
California, June 1992. ACM Press. 145

[67] Olivier Danvy and Kevin Millikin. On the equivalence between small-step and big-
step abstract machines: a simple application of lightweight fusion. Information
Processing Letters, 106(3):100–109, 2008. 61, 73, 94, 103, 105, 122, 144, 151,
179, 203, 217

[68] Olivier Danvy and Kevin Millikin. A rational deconstruction of Landin’s SECD ma-
chine with the J operator. Logical Methods in Computer Science, 4(4:12):1–67,
November 2008. 47, 188, 189, 190

[69] Olivier Danvy and Kevin Millikin. Refunctionalization at work. Science of Computer
Programming, 74(8):534–549, 2009. Extended version available as the research
report BRICS RS-08-04. 46, 103, 126, 144, 145, 204, 205

[70] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald Søn-
dergaard, editor, Proceedings of the Third International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming (PPDP’01), pages 162–174,
Firenze, Italy, September 2001. ACM Press. Extended version available as the re-
search report BRICS RS-01-23; most influential paper at PPDP 2001. 45, 69, 103,
109, 126, 144, 204, 237

[71] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Re-
search Report BRICS RS-04-26, Department of Computer Science, Aarhus Univer-
sity, Aarhus, Denmark, November 2004. A preliminary version appeared in the in-
formal proceedings of the Second International Workshop on Rule-Based Program-
ming (RULE 2001), Electronic Notes in Theoretical Computer Science, Vol. 59.4.
57, 58, 61, 62, 68, 76, 103, 104, 126, 139, 140, 164, 201, 218

[72] Olivier Danvy and Ulrik P. Schultz. Lambda-lifting in quadratic time. Journal
of Functional and Logic Programming, 2004(1), July 2004. Available online at
http://danae.uni-muenster.de/lehre/kuchen/JFLP/. A preliminary version
was presented at the Sixth International Symposium on Functional and Logic Pro-
gramming (FLOPS 2002). 235

[73] Olivier Danvy and Ian Zerny. Three syntactic theories for combinatory graph reduc-
tion. In María Alpuente, editor, Logic Based Program Synthesis and Transformation,
20th International Symposium, LOPSTR 2010, revised selected papers, number 6564
in Lecture Notes in Computer Science, pages 1–20, Hagenberg, Austria, July 2010.
Springer. Invited talk. Extended version to appear in ACM Transactions on Com-
putational Logic and appears in Chapter 10. 6, 73, 149, 159, 177, 206, 209, 267

[74] Olivier Danvy and Ian Zerny. Three syntactic theories for combinatory graph re-
duction. ACM Transactions on Computational Logic, 2013. To appear. A preliminary
version appears in [73]. This version appears in Chapter 10. 6, 209

[75] Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. Defunctionalized in-
terpreters for call-by-need evaluation. In Matthias Blume and German Vidal, ed-
itors, Functional and Logic Programming, 10th International Symposium, FLOPS

267

http://danae.uni-muenster.de/lehre/kuchen/JFLP/


Bibliography

2010, number 6009 in Lecture Notes in Computer Science, pages 240–256, Sendai,
Japan, April 2010. Springer. An extended version appears in [77] and in Chapter 7.
6, 125, 268

[76] Olivier Danvy, Jacob Johannsen, and Ian Zerny. A walk in the semantic park. In
Siau-Cheng Khoo and Jeremy Siek, editors, Proceedings of the 2011 ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM
2011), pages 1–12, Austin, Texas, January 2011. ACM Press. Invited talk. An ex-
tended version appears in Chapter 6. 6, 52, 73, 93, 122, 189, 190, 193, 201, 205,
241

[77] Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. On inter-deriving small-
step and big-step semantics: A case study for storeless call-by-need evaluation.
Theoretical Computer Science, 435:21–42, 2012. A preliminary version appears in
[75]. This version appears in Chapter 7. 6, 73, 125, 158, 159, 170, 174, 178, 189,
206, 211, 241, 254, 268

[78] Rowan Davies. A temporal-logic approach to binding-time analysis. In Proc. of
LICS’96, pages 184–195, 1996. 255

[79] Ana Lúcia de Moura, Noemi Rodriguez, and Roberto Ierusalimschy. Coroutines in
Lua. Journal of Universal Computer Science, 10(7):910–925, 2004. 87, 91

[80] Yuxin Deng, Robert J. Simmons, and Iliano Cervesato. Relating reasoning method-
ologies in linear logic and process algebra. Technical Report CMU-CS-11-145, Dept.
of Comp. Sci., CMU, December 2011. 246

[81] Stephan Diehl, Pieter Hartel, and Peter Sestoft. Abstract machines for program-
ming language implementation. Future Generation Computer Systems, 16:739–751,
2000. 158

[82] Rémi Douence and Pascal Fradet. A systematic study of functional language im-
plementations. ACM Transactions on Programming Languages and Systems, 20(2):
344–387, 1998. 158, 159

[83] R. Kent Dybvig, Simon Peyton-Jones, and Amr Sabry. A monadic framework for
subcontinuations. Journal of Functional Programming, 17(6):687–730, 2007. 153

[84] Jon Fairbairn and Stuart Wray. TIM: a simple, lazy abstract machine to execute
supercombinators. In Gilles Kahn, editor, Functional Programming Languages and
Computer Architecture, number 274 in Lecture Notes in Computer Science, pages
34–45, Portland, Oregon, September 1987. Springer-Verlag. 162, 179

[85] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Control
and State in Imperative Higher-Order Programming Languages. PhD thesis, Com-
puter Science Department, Indiana University, Bloomington, Indiana, August 1987.
29, 62, 67, 69, 102

[86] Matthias Felleisen and Matthew Flatt. Programming languages and lambda cal-
culi. Unpublished lecture notes available at http://www.ccs.neu.edu/home/
matthias/3810-w02/readings.html and last accessed in April 2008, 1989-2001.
139

268

http://www.ccs.neu.edu/home/matthias/3810-w02/readings.html
http://www.ccs.neu.edu/home/matthias/3810-w02/readings.html


Bibliography

[87] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine,
and the λ-calculus. In Martin Wirsing, editor, Formal Description of Programming
Concepts III, pages 193–217. Elsevier Science Publishers B.V. (North-Holland), Am-
sterdam, 1986. 47, 62, 78

[88] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103(2):235–271, 1992.
62, 149

[89] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering
with PLT Redex. The MIT Press, 2009. 3, 20, 67, 68, 69, 78, 92, 102, 159, 193, 258

[90] Andrzej Filinski. Representing monads. In Boehm [35], pages 446–457. 16, 121

[91] Andrzej Filinski. Representing layered monads. In Alex Aiken, editor, Proceedings of
the Twenty-Sixth Annual ACM Symposium on Principles of Programming Languages,
pages 175–188, San Antonio, Texas, January 1999. ACM Press. 16

[92] Michael J. Fischer. Lambda-calculus schemata. In Talcott [204], pages 259–288.
Earlier version available in the proceedings of an ACM Conference on Proving As-
sertions about Programs, SIGPLAN Notices, Vol. 7, No. 1, January 1972. 42

[93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In David W. Wall, editor, Proceedings of the ACM SIG-
PLAN’93 Conference on Programming Languages Design and Implementation, SIG-
PLAN Notices, Vol. 28, No 6, pages 237–247, Albuquerque, New Mexico, June
1993. ACM Press. 41

[94] Daniel P. Friedman and Mitchell Wand. Essentials of Programming Languages. The
MIT Press, third edition, 2008. 69

[95] Daniel P. Friedman and David S. Wise. CONS should not evaluate its arguments.
In S. Michaelson and Robin Milner, editors, Third International Colloquium on Au-
tomata, Languages, and Programming, pages 257–284. Edinburgh University Press,
Edinburgh, Scotland, July 1976. 160

[96] Daniel P. Friedman, Abdulaziz Ghuloum, Jeremy G. Siek, and Lynn Winebarger.
Improving the lazy Krivine machine. Higher-Order and Symbolic Computation, 20
(3):271–293, 2007. 126, 158, 177

[97] Stefan Fünfrocken. Transparent migration of Java-based mobile agents. In Kurt
Rothermel and Fritz Hohl, editors, Mobile Agents, Second International Workshop,
MA’98, Proceedings, volume 1477 of Lecture Notes in Computer Science, pages 26–
37, Stuttgart, Germany, September 1998. Springer. 148

[98] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In
Peter Lee, editor, Proceedings of the 1999 ACM SIGPLAN International Conference
on Functional Programming, SIGPLAN Notices, Vol. 34, No. 9, pages 18–27, Paris,
France, September 1999. ACM Press. 58, 105

[99] Ronald Garcia, Andrew Lumsdaine, and Amr Sabry. Lazy evaluation and delimited
control. Logical Methods in Computer Science, 6(3:1):1–39, July 2010. A prelimi-
nary version was presented at the Thirty-Sixth Annual ACM Symposium on Princi-
ples of Programming Languages (POPL 2009). 68, 126, 131, 132, 148, 158, 170,
178, 218

269



Bibliography

[100] John R. W. Glauert, Richard Kennaway, and M. Ronan Sleep. Dactl: An exper-
imental graph rewriting language. In Hartmut Ehrig, Hans-Jörg Kreowski, and
Grzegorz Rozenberg, editors, Graph-Grammars and Their Application to Computer
Science, 4th International Workshop, Proceedings, volume 532 of Lecture Notes in
Computer Science, pages 378–395, Bremen, Germany, March 1990. Springer. 188,
237

[101] Michael J. C. Gordon. The Denotational Description of Programming Languages.
Springer-Verlag, 1979. 9

[102] Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias
Felleisen. Automatically restructuring programs for the web. In Martin S. Feather
and Michael Goedicke, editors, 16th IEEE International Conference on Automated
Software Engineering (ASE 2001), pages 211–222, Coronado Island, San Diego,
California, USA, November 2001. IEEE Computer Society. ISBN 0-7695-1426-X.
48

[103] Bernd Grobauer and Zhe Yang. The second Futamura projection for type-directed
partial evaluation. Higher-Order and Symbolic Computation, 14(2/3):173–219,
2001. 148

[104] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of
JavaScript. In Theo D’Hondt, editor, ECOOP 2010 – Object-Oriented Programming,
24th European Conference, volume 6183 of Lecture Notes in Computer Science, pages
126–150, Maribor, Slovenia, June 2010. Springer-Verlag. 87, 88, 90, 91

[105] Carl A. Gunter. Semantics of Programming Languages: Structures and Techniques.
The MIT Press, 1992. 9

[106] John Hannan and Dale Miller. From operational semantics to abstract machines. In
Mitchell Wand, editor, Special issue on the 1990 ACM Conference on Lisp and Func-
tional Programming, Mathematical Structures in Computer Science, Vol. 2, No. 4,
pages 415–459. December 1992. 47, 242, 259

[107] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime systems
within the lambda-sigma calculus. Journal of Functional Programming, 8(2):131–
172, 1998. 159

[108] Robert Harper. Practical foundations for programming languages. Cambridge Uni-
versity Press, 2013. 20, 239

[109] Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical frame-
work. JFP, 17(4-5):613–673, 2007. 32, 242, 243, 249

[110] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, 1993. A preliminary version appeared in the
proceedings of the First IEEE Symposium on Logic in Computer Science, pages 194–
204, June 1987. 32, 242, 243

[111] John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles.
In Boehm [35], pages 458–471. 41, 223

[112] John Hatcliff and Olivier Danvy. A computational formalization for partial evalua-
tion. Mathematical Structures in Computer Science, 7(5):507–541, 1997. 223

270



Bibliography

[113] Peter Henderson and James H. Morris Jr. A lazy evaluator. In Susan L. Graham, ed-
itor, Proceedings of the Third Annual ACM Symposium on Principles of Programming
Languages, pages 95–103. ACM Press, January 1976. 126, 160

[114] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580, 1969. 7

[115] Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554, 1997.
136, 199

[116] John Hughes. Super combinators: A new implementation method for applicative
languages. In Daniel P. Friedman and David S. Wise, editors, Conference Record
of the 1982 ACM Symposium on Lisp and Functional Programming, pages 1–10,
Pittsburgh, Pennsylvania, August 1982. ACM Press. 189

[117] Graham Hutton and Joel Wright. Calculating an Exceptional Machine. In Hans-
Wolfgang Loidl, editor, Trends in Functional Programming, volume 5. Intellect,
February 2006. 189

[118] Alan Jeffrey. A fully abstract semantics for concurrent graph reduction. In Pro-
ceedings of the Ninth Annual IEEE Symposium on Logic in Computer Science, pages
82–91, Paris, France, July 1994. IEEE Computer Society Press. 188, 237

[119] Jacob Johannsen. An investigation of Abadi and Cardelli’s untyped calculus of ob-
jects. Master’s thesis, Department of Computer Science, Aarhus University, Aarhus,
Denmark, June 2008. BRICS research report RS-08-6. 4, 48, 62

[120] Thomas Johnsson. Efficient compilation of lazy evaluation. In Susan L. Graham,
editor, Proceedings of the 1984 Symposium on Compiler Construction, SIGPLAN No-
tices, Vol. 19, No 6, pages 58–69, Montréal, Canada, June 1984. ACM Press. 189

[121] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations.
In Jean-Pierre Jouannaud, editor, Functional Programming Languages and Com-
puter Architecture, number 201 in Lecture Notes in Computer Science, pages 190–
203, Nancy, France, September 1985. Springer-Verlag. 235

[122] Mark B. Josephs. The semantics of lazy functional languages. Theoretical Computer
Science, 68:105–111, 1989. 126

[123] Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet,
and Martin Wirsing, editors, Proceedings of the 4th Annual Symposium on Theoreti-
cal Aspects of Computer Science, number 247 in Lecture Notes in Computer Science,
pages 22–39, Passau, Germany, February 1987. Springer-Verlag. 20, 240, 241

[124] Gabriel Kerneis. Continuation-Passing C: Program Transformations for Compiling
Concurrency in an Imperative Language. PhD thesis, PPS, Université Denis Diderot
(Paris VII), Paris, France, 2012. 48

[125] Jan W. Klop. Combinatory Reduction Systems. Mathematical Centre Tracts 127.
Mathematisch Centrum, Amsterdam, 1980. 223

[126] Pieter W. M. Koopman. Functional Programs as Executable Specifications. PhD thesis,
University of Nijmegen, Nijmegen, The Netherlands, 1990. 188, 189, 237

271



Bibliography

[127] Jean-Louis Krivine. Un interprète du λ-calcul. Brouillon. Available online at http:
//www.pps.jussieu.fr/~krivine/, 1985. 47, 62

[128] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and
Symbolic Computation, 20(3):199–207, 2007. 47, 62, 177

[129] George Kuan. A rewriting semantics for type inference. Master’s thesis, Department
of Computer Science, University of Chicago, March 2007. Technical report TR-
2007-03. 48, 62

[130] Joachim Lambek. The mathematics of sentence structure. American Mathematical
Monthly, 65:363–386, 1958. 244

[131] Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308–320, 1964. 3, 9, 20, 32, 45, 47, 148, 188

[132] Peter J. Landin. A correspondence between Algol 60 and Church’s lambda notation,
Parts 1 and 2. Communications of the ACM, 8:89–101 and 158–165, 1965. 3, 20,
32

[133] Peter J. Landin. Histories of discoveries of continuations: Belles-lettres with equiv-
ocal tenses. In Olivier Danvy, editor, Proceedings of the Second ACM SIGPLAN Work-
shop on Continuations (CW’97), Technical report BRICS NS-96-13, Aarhus Univer-
sity, pages 1:1–9, Paris, France, January 1997. 16, 39

[134] John Launchbury. A natural semantics for lazy evaluation. In Susan L. Graham,
editor, Proceedings of the Twentieth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 144–154, Charleston, South Carolina, January 1993.
ACM Press. 126, 138, 158, 175, 177, 178

[135] Peter Lee, editor. Proceedings of the Twenty-Second Annual ACM Symposium on Prin-
ciples of Programming Languages, San Francisco, California, January 1995. ACM
Press. 262

[136] Xavier Leroy. The Zinc experiment: an economical implementation of the ML lan-
guage. Rapport Technique 117, INRIA Rocquencourt, Le Chesnay, France, February
1990. 62

[137] Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Infor-
mation and Computation, 207:284–304, 2009. 241

[138] Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul. Thèse
d’état, Université de Paris VII, Paris, France, 1978. 160

[139] Hans-Wolfgang Loidl, Fernando Rubio, Norman Scaife, Kevin Hammond, Susumu
Horiguchi, Ulrike Klusik, Rita Loogen, Greg Michaelson, Ricardo Pena, Steffen
Priebe, Álvaro J. Rebón Portillo, and Philip W. Trinder. Comparing parallel func-
tional languages: Programming and performance. Higher-Order and Symbolic Com-
putation, 16(3):203–251, 2003. 189

[140] Florian Loitsch. Scheme to JavaScript Compilation. PhD thesis, Université de Nice,
Nice, France, March 2009. 148

272

http://www.pps.jussieu.fr/~krivine/
http://www.pps.jussieu.fr/~krivine/


Bibliography

[141] John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calcu-
lus. Journal of Functional Programming, 8(3):275–317, 1998. 126, 129, 130, 132,
158, 165, 175, 262

[142] John McCarthy. An algebraic language for the manipulation of symbolic expres-
sions. Technical Report AI Memo No. 1, MIT AI Lab, Cambridge, Massachusetts,
September 1958. 3, 32

[143] Jan Midtgaard. Transformation, Analysis, and Interpretation of Higher-Order Proce-
dural Programs. PhD thesis, BRICS PhD School, Aarhus University, Aarhus, Den-
mark, June 2007. 4

[144] Kevin Millikin. A Structured Approach to the Transformation, Normalization and
Execution of Computer Programs. PhD thesis, BRICS PhD School, Aarhus University,
Aarhus, Denmark, May 2007. 4

[145] Robin Milner. Communication and Concurrency. Prentice Hall International, 1989.
164

[146] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The
MIT Press, 1990. 4, 31

[147] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). The MIT Press, 1997. 190

[148] John C. Mitchell. Foundations for Programming Languages. MIT Press, 1993. 7, 20

[149] Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93:55–92, 1991. 7, 10, 41

[150] P. D. Mosses. Modular structural operational semantics. Journal of Logic and Alge-
braic Programming, 60-61:195–228, 2004. 258

[151] Johan Munk. A study of syntactic and semantic artifacts and its application to
lambda definability, strong normalization, and weak normalization in the pres-
ence of state. Master’s thesis, Department of Computer Science, Aarhus University,
Aarhus, Denmark, May 2007. BRICS research report RS-08-3. 4, 62, 149

[152] Keiko Nakata and Masahito Hasegawa. Small-step and big-step semantics for call-
by-need. Journal of Functional Programming, 19(6):699–722, 2009. 158, 174,
178, 236, 237

[153] Lasse R. Nielsen. A study of defunctionalization and continuation-passing style. PhD
thesis, BRICS PhD School, Department of Computer Science, Aarhus University,
Aarhus, Denmark, July 2001. BRICS DS-01-7. 4

[154] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications, a formal
introduction. Wiley Professional Computing. John Wiley and Sons, 1992. 7, 20,
112

[155] Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point promotion. In
Matthias Felleisen, editor, Proceedings of the Thirty-Fourth Annual ACM Symposium
on Principles of Programming Languages, SIGPLAN Notices, Vol. 42, No. 1, pages
143–154, Nice, France, January 2007. ACM Press. 58, 105, 122, 144, 179, 203

273



Bibliography

[156] Jens Palsberg, editor. Semantics and Algebraic Specification: Essays dedicated to
Peter D. Mosses on the occasion of his 60th birthday, number 5700 in Lecture Notes
in Computer Science, 2009. Springer. 263, 266

[157] Alberto Pettorossi and Maurizio Proietti. Transformation of logic programs: Foun-
dations and techniques. JLP, 19:261–320, 1994. 254

[158] Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and
Matthias Felleisen. Continuations from generalized stack inspection. In Olivier
Danvy and Benjamin C. Pierce, editors, Proceedings of the 2005 ACM SIGPLAN
International Conference on Functional Programming (ICFP’05), SIGPLAN Notices,
Vol. 40, No. 9, pages 216–227, Tallinn, Estonia, September 2005. ACM Press. 148

[159] Simon L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice Hall International Series in Computer Science. Prentice-Hall International,
1987. 189, 190, 192, 211, 236

[160] Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware:
The spineless tagless G-machine. Journal of Functional Programming, 2(2):127–
202, 1992. 48, 138, 158, 189

[161] Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet
and Gordon Plotkin, editors, Logical Frameworks, pages 149–181. Cambridge Uni-
versity Press, 1991. 242, 243

[162] Frank Pfenning. Lecture notes for 15-816: Linear logic, February 2012. 255

[163] Frank Pfenning and Carsten Schürmann. Algorithms for equality and unification
in the presence of notational definitions. In Types for Proofs and Programs, pages
179–193, 1998. 250

[164] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proc. of CADE’16,
pages 202–206. Springer LNAI 1632, 1999. 243

[165] Frank Pfenning and Robert J. Simmons. Substructural operational semantics as
ordered logic programming. In Proc. of LICS’09, pages 101–110, 2009. 239, 242,
244, 250, 252, 254, 257

[166] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002. 20,
48, 62, 69

[167] Maciej Pirog and Dariusz Biernacki. A systematic derivation of the STG machine
verified in Coq. In Jeremy Gibbons, editor, Haskell ’10: Proceedings of the 2010
ACM SIGPLAN Haskell Symposium, pages 25–36, Baltimore, Maryland, September
2010. ACM Press. 48, 138, 149, 159, 206

[168] Marinus J. Plasmeijer and Marko C. J. D. van Eekelen. Functional Programming
and Parallel Graph Rewriting. Addison-Wesley, 1993. 188, 190, 237

[169] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1:125–159, 1975. 42, 122, 180, 188

274



Bibliography

[170] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5:223–255, 1977. 4, 33

[171] Gordon D. Plotkin. A structural approach to operational semantics. Technical Re-
port FN-19, Department of Computer Science, Aarhus University, Aarhus, Den-
mark, September 1981. Reprinted in the Journal of Logic and Algebraic Program-
ming 60-61:17-139, 2004, with a foreword [172]. 67, 71, 105, 212

[172] Gordon D. Plotkin. The origins of structural operational semantics. Journal of Logic
and Algebraic Programming, 60-61:3–15, 2004. 275

[173] Jeff Polakow and Frank Pfenning. Relating natural deduction and sequent calculus
for intuitionistic non-commutative linear logic. In Andre Scedrov and Achim Jung,
editors, Proc. of MFPS’99, volume 20 of ENTCS, pages 449–466, April 1999. 244

[174] Adam Poswolsky and Carsten Schürmann. Factoring report. Technical Report
YALEU/DCS/TR-1256, Dept. of Comp. Sci., Yale University, November 2003. 256

[175] Matthias Puech. Certificates for Incremental Type Checking. PhD thesis, Alma Mater
Studiorum, Università di Bologna and Université Denis Diderot (Paris VII), April
2013. 48, 239, 241

[176] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proceedings of 25th ACM National Conference, pages 717–740, Boston,
Massachusetts, 1972. Reprinted in Higher-Order and Symbolic Computation
11(4):363-397, 1998, with a foreword [179]. 3, 18, 32, 41, 44, 45, 46, 47, 69, 78,
94, 144, 152, 159, 173, 239, 241

[177] John C. Reynolds. The discoveries of continuations. In Talcott [204], pages 233–
247. 16, 39

[178] John C. Reynolds. Theories of Programming Languages. Cambridge University Press,
1998. 7, 9, 33

[179] John C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic
Computation, 11(4):355–361, 1998. 275

[180] Bernard Robinet. Contribution à l’étude de réalités informatiques. Thèse d’état,
Université Pierre et Marie Curie (Paris VI), Paris, France, May 1974. 237

[181] John A. Robinson. A note on mechanizing higher order logic. In Bernard Meltzer
and Donald Michie, editors, Machine Intelligence, volume 5, pages 123–133. Edin-
burgh University Press, 1969. 236
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