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Abstract

We present Dynamic ML: a dynamically typed language in the ML
family. We show how Dynamic ML provides modern programming-language
features, such as type reflection and implicit coercions. In addition, we
show how the existing optimizing compiler infrastructure of Standard ML
of New Jersey outperforms that of other dynamically typed programming
languages currently in wide-spread use.
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1 Introduction
Standard ML [2] is an aging language by now. It appears that most of its
development has stagnated. Meanwhile, development has continued for other
programming languages and among their features we can find many that Stan-
dard ML lacks: aspects, contracts, duck typing, dynamic scope, dynamic typing,
implicit coercions, lvalues and real variables defined by assignment, multiple in-
heritance, objects, runtime code evaluation, and type reflection, just to name a
few. These are all notable features provided by 2.0 programming languages.

In this work, we take a first step towards modernizing ML and consider
dynamic types for an ML-like language. We follow Harper’s vision of a dynam-
ically typed language as a unityped language [1] and extend Standard ML with
such a unityped embedded language. We assume the reader to be mildly fa-
miliar with functional languages (such as Standard ML) and with dynamically
typed languages (such as Python or JavaScript). The entire development can
be found on the author’s website.1

2 Dynamic ML
We extend the syntax of Standard ML with constructs for dynamically typed
features. The extension is defined by the following BNF:

decl 3 d ::= FUN f [x1, ..., xn] = e NUF (recursive function definitions)

exp 3 e ::= IF e THEN e ELSE e (conditionals)
| FN [x1, ..., xn] => e NF (anonymous functions)
| e$[e1, ..., en] (application)
| VOID (literal onething)
| TRUE | FALSE (literal booleans)
| NUM n (literal numbers)
| STR ”...” (literal strings)
| LIST [e1, ..., en] (literal lists)
| asTYPE e (type casts)
| isTYPE e (type predicates)
| PRINT e | PRINTLN e (printing)

where TYPE is one of the types: VOID, BOOL, NUM, STR, LIST, or CLO. Since
Dynamic ML is an extension of Standard ML, decl and exp are super-sets of
Standard ML declarations and expressions respectively. A program is then just
a sequence of declarations (or a module or any other valid top-level declaration
from Standard ML).

1http://www.zerny.dk/dynamic-ml.html



Equality. The primitive equality is the straightforward extension of structural
equality in Standard ML. Two values are equal if they are of the same dynamic
type and the raw data is structurally equal. For example:

val _ = ( PRINTLN (NUM 1 == NUM 0);
PRINTLN (NUM 0 == STR "0");
PRINTLN (STR "0" == STR "0"));

will print false, false, and true.
Of course, this is a very simpleminded notion of equality, but luckily we

can extend it to more powerful equalities if we wat. We illustrate this with a
JavaScript-style semantics described in Section 5.

Type casting. Often we will need to pass the raw data of a dynamically
typed value to some typed ML code. In such a case, we need explicit casts to
obtain the raw value. These are done with the asTYPE type-cast expressions.
For example, say we want the size of a string. We can use the Standard ML
String.size for this:

FUN size[s] =
NUM (Num. fromInt ( String .size ( asSTR s)))

NUF
val s = STR "Hello World!"
val n = size$[s]

which, when loaded, will give us the output:

val size = CLO fn : DML.t
val s = STR "Hello World!" : DML.t
val n = NUM 12 : DML.t

For the most part, such type casts will be implicit in the dynamically typed
code, as can be seen here from the use of size. Should a type cast be applied
to a dynamically typed value of a different type a TYPE_CAST_ERROR is raised.

Type reflection. Now that we have types at runtime we can inspect them!
This is a hallmark feature of a solid dynamically typed language and Dynamic
ML provides ample support for it. If we just need to check for one type we can
use the isTYPE predicates. For example:

FUN foo[x] =
IF isNUM x
THEN x + NUM 42
ELSE x

NUF

In other cases, we want have behaviors for several types. Here we can use the
built in case analysis of Standard ML. For example, lets define a more reusable
size function typical found in dynamically typed languages:



FUN size[x] =
(case x

of STR s => NUM (Num. fromInt ( String .size s))
| LIST l => NUM (Num. fromInt (List. length l))
| _ => VOID)

NUF
val n1 = size$[LIST [NUM 1, NUM 2]]
val n2 = size$[STR "Hello World!"]
val n3 = size$[NUM 10]

which yields:

val n1 = NUM 2 : DML.t
val n2 = NUM 12 : DML.t
val n3 = VOID : DML.t

In the above, we let VOID be the result for non-sizable values. This use of case
analysis is kind of neat since we do not need to put in the asSTR and asLIST
type casts in the case analysis.

3 Tools
Any real programming language comes with tools. Currently we provide a
compiler (the dmlc program), a runtime system (the Standard ML of New Jersey
system), and an editor (the dml-mode for Emacs).

3.1 The compiler: sed
The compiler for Dynamic ML is a sed-script that desugars the Dynamic ML
constructs into Standard ML. This script is found in the file dmlc. To execute a
program, simply desugar it and then run the output with Standard ML of New
Jersey in the working directory containing the Dynamic ML implementation file
dml.sml:

$ ./ dmlc hello.dml
$ sml hello.dml.sml
...
val it = () : unit
’Hello World!’
-

3.2 The editor: dml-mode
The dml-mode for Emacs provides a nicer interface when working with Dy-
namic ML. It provides syntax highlighting and interacting with the underly-
ing Standard ML process (which will be executing our Dynamic ML code).
To load dml-mode in Emacs, hit M-x load-file RET, then input the path to



dml-mode/dml-mode-startup.el. Now, opening a .dml file will start the DML
mode. To load code from a buffer, simply hit C-c C-b. On the first go it will ask
for the Standard ML process to use (sml should work if you have it installed).
After that the code within the buffer will be compiled and then loaded and
executed by Standard ML of New Jersey.

3.3 The runtime: Standard ML of New Jersey
Dynamic ML is executed by embedding it into Standard ML. This embedding
defines the dynamic type as a one big recursive sum type: DML.t. Each type
of dynamic runtime value is thus a summand in the dynamic type DML.t. The
constructs used in the image of the embedding are contained within the Standard
ML structure DML found in dml.sml.

4 Benchmarks
Having defined Dynamic ML and its execution environment we now benchmark
it against Python, a popular and dynamically typed programming language.

4.1 The Fibonacci function
Consider the quintessential benchmark program: the recursively defined Fi-
bonacci function. Here is its definition in Dynamic ML:

FUN fib[x] =
IF x == NUM 0 THEN x
ELSE IF x == NUM 1 THEN x
ELSE fib$[x - NUM 1] + fib$[x - NUM 2]

NUF

and its counterpart in Python:

def fib(x):
if x == 0: return x
elif x == 1: return x
else: return fib(x - 1) + fib(x - 2)

Timing these two functions applied to 35 yields a wall time of 11020 millisec-
onds for Dynamic ML and 20272 milliseconds for Python. That is 1.84 times
slower for Python compared to Dynamic ML. Despite being defined for a func-
tional language, the Standard ML of New Jersey implementation demonstrates
its superiority as an optimizing compiler and runtime for a dynamically typed
programming language.

4.2 The faster Fibonacci function
Somewhat surprisingly, we can do better yet! We can step-wise optimize our
use of type reflection to improve performance of the Fibonacci function.



First, we create a “primitive” (i.e., non-dynamically typed) function inside
fib that knows we only ever give it one argument:

val fib1 =
FN [x] =>

let fun go x =
IF x == NUM 0 THEN x
ELSE IF x == NUM 1 THEN x
ELSE go (x - NUM 1) + go (x - NUM 2)

in go x
end

NF

Here fib1 35 runs in 6929 milliseconds.
Second, we call the inner function with the raw number data:

val fib2 =
FN [x] =>

let fun go x =
if x = 0 then NUM x
else if x = 1 then NUM x
else go (Num.- (x ,1)) + go (Num .-(x ,2))

in go ( asNUM x)
end

NF

Here we have to be careful not to mix the raw numbers (which we do subtraction
on) from the dynamically typed numbers (which we do addition on). Now
fib2 35 runs in 1487 milliseconds.

Third, we make sure we return the raw number from the inner function too:

val fib3 =
FN [x] =>

let fun go x =
if x = 0 then x
else if x = 1 then x
else Num .+ (go (Num.- (x ,1)) ,

go (Num.- (x ,2)))
in NUM (go ( asNUM x))
end

NF

Now fib3 35 runs in 617 milliseconds.
For each definition, Table 1 lists its total running time in milliseconds and

its relative speed compared to original Dynamic ML definition. Our conclusion:
not only is Dynamic ML faster than other popular dynamically typed languages,
we can actually make programs even more efficient if we care to do so.



Language RT in ms Rel RT
Python 20272 1.84
Dynamic ML: fib 11020 1
Dynamic ML: fib1 6929 0.63
Dynamic ML: fib2 1487 0.14
Dynamic ML: fib3 617 0.06

Table 1: Running time for the Fibonacci function applied to 35

5 JavaScript-style equality
As mentioned in Section 2, the equality operator is not really what we find
in most dynamically typed languages. For example, it requires the user to
add annoying type conversions by hand. To avoid this we show how to define
alternative interpretations of the dynamic types entirely within the language.
This allows defining more user friendly operators.

In the Dynamic ML distribution, we provide a JavaScript structure, JS,
that implements JavaScript-style conversions and operators. To redefine the
Fibonacci function using JavaScript-style semantics we simply open up the JS-
structure locally to the function:

local open JS in
FUN fibjs[x] =

IF x == NUM 0
THEN x
ELSE IF x == NUM 1

THEN x
ELSE fibjs$ [x - NUM 1] + fibjs$ [x - NUM 2]

NUF
end

We have effectively extended the domain of the Fibonacci function to any
dynamic value that can be interpreted as a number in a JavaScript-like way:

- fibjs$ [STR "0"];
val it = STR "0" : t
- fibjs$ [STR "1"];
val it = STR "1" : t
- fibjs$ [STR "2"];
val it = NUM 1 : t
- fibjs$ [STR "10"];
val it = NUM 55 : t
- fibjs$ [STR ""];
val it = STR "" : t
- fibjs$ [STR " -1"];

C-c C-c
Interrupt



The JavaScript-like equality allows us to easily compare values of distinct
types:

- open JS;
- STR "" == NUM 0;
val it = BOOL true : t
- NUM 0 == STR "0";
val it = BOOL true : t

That might look disturbing, but fret not, we cannot draw bogus conclusions
such as the empty string being equal to a non-empty string:

- STR "" == STR "0";
val it = BOOL false : t

That would be nonsense.

6 Conclusion and perspectives
We have presented Dynamic ML, a dynamically typed language in the ML fam-
ily. Dynamic ML shows that even though Standard ML has a static type system
we don’t need to use it. The language is a simple embedding into Standard ML
and allows us to reuse the existing optimizing compiler and runtime infrastruc-
ture. Indeed, the execution of dynamically typed programs in Standard ML of
New Jersey is faster than the execution of programs in Python.

To illustrate the ease of use and performance of Dynamic ML, we would
have liked to finish with a more real-world program than the Fibonacci function.
Unfortunately, our current map/reduce program fails with a TYPE_CAST_ERROR
exception and we have not been able to debug the cause. We are now looking
at building a debugger.

Our next step is to add objects. It is a bit of a stretch to call a language
without an object system for a dynamically typed (or modern) language.

As illustrated in the optimizations of the Fibonacci function, a lot of time
can be saved by optimizing out dynamic type casts. Future work should con-
sider automatically optimizing these cases. We are looking at a refinement-type
analysis to this effect.

We are also excited about Ohori et al.’s resent work on SML# [3], and hope
that it will open new vistas for Bovik’s use of thaumaturgic data bases.
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