
A DAIMI-Scheme VM and JIT compiler in OCaml
Thomas Salomon
salomon@cs.au.dk

Ian Zerny
zerny@cs.au.dk

December 2008
Revised January 2011

Abstract
The dsvmopt VM is a feature complete virtual machine for DAIMI-Scheme with a JIT

compiler targeting x86. The entire VM is less than 2000 lines of code with less than 100 lines
of C and it features an embedded domain-specific language for generating x86 instructions.
The VM was written as part of the Virtual Machine course given by Lars Bak (Google) at
Aarhus University in 2008.

Contents
1 Introduction 1

2 Memory 1
2.1 Object Model . 1
2.2 Garbage Collection . 2

3 Interpreter 3
3.1 Exploration . 3
3.2 Implementation . 5

3.2.1 Visit . 5
3.2.2 Application . 5
3.2.3 Continue . 6
3.2.4 Builtin Functions . 6
3.2.5 Considerations . 6

4 Dynamic Compilation 6
4.1 Architecture . 6
4.2 Working with the OCaml GC . 8
4.3 Optimisations . 9
4.4 Future optimisations . 9

5 Results 10
5.1 Execution Time . 10
5.2 Memory Consumption . 11
5.3 Conclusion . 12

A Usage 13
A.1 Building . 13
A.2 Running . 13
A.3 Testing . 14
A.4 Benchmarking . 14

B DAIMI Scheme 15
B.1 VML Assembly Language . 15
B.2 Virtual Machine Registers . 15

List of Figures
1 Memory layout of a closure object. 2
2 Benchmarks for several variants of the VM. 10
3 The DAIMI-Scheme C-VM compared to our VM. 11
4 Memory consumption for dsvmopt/benchmarks/dscmp. 12

Listings
1 Representation of DAIMI-Scheme Values . 1
2 Switch-based interpreter. 3
3 Higher-order threaded code interpreter. 4
4 Repaired tail calls in direct threaded code. 4
5 First-order interpreter. 4
6 Interpreter code to handle a move instruction. 5
7 Implementation of the integer? primitive. 6
8 Traversal of a linked list in embedded assembly language. 7
9 Using the mark function for branching. 7

1 Introduction
This project was created as part of the Virtual Machines course of 2008 by Lars Bak (Google) at
Aarhus University. The present report documents the implementation of a virtual machine for the
DAIMI-Scheme language. The virtual machine is a hybrid system with a byte-code interpreter and
a dynamic compiler to x86 machine code. The virtual machine is written almost entirely in the
functional programming language OCaml. Each section in this report describes a core component
of the system. External resources are clarified in the appendix together with some practical
information on the code infrastructure, such as building and running the system (Appendix B),
tests (Appendix A.3) and benchmarks (Appendix A.4).

2 Memory
The memory model of a VM describes the representation of objects from the source language and
the management of the memory they occupy. The following describes our implementation and
management of DAIMI-Scheme objects. The code is found in the file dsvmopt/values.cpp.ml.

2.1 Object Model
The objects of the DAIMI-Scheme language (in Scheme parlor, values) are the first class objects
of the language. By this we mean any value that can be syntactically created within the language
or returned by a language construct. Every object must belong to exactly one of the following sets
of types: booleans, integers, characters, strings, symbols, pairs, vectors, and procedures. DAIMI-
Scheme is dynamically typed and all values, not variables, must have a known type at any point
during the execution of a program. The most notable feature of the DAIMI-Scheme object model
is that procedures are first class.

In OCaml, we have chosen to represent DAIMI-Scheme objects in terms of the algebraic data
type value. The type definition of value is shown in listing 1 along with the mutually recursive
type definition of control frames and a few type aliases for convenience.
type value =
| Void (∗ External value types ∗)
| Nil
| True
| False
| Int of int
| Char of char
| Str of string
| Sym of string
| Clo of index * env
| Pair of value ref * value ref (∗ Internal value types ∗)
| Vec of value array
| Prim of name * arity * builtin
| Apply
| CallCC
| Cont of cf
| IPort of in_channel
| OPort of out_channel
| EOF

and cf = (∗ Type of control frames ∗)
| Init
| Frame of int * env * value array * cf

and name = string
and arity = int
and env = value array list
and resume = unit → value
and builtin = value array → value array → resume → value

Listing 1: Representation of DAIMI-Scheme Values

1

• 4 index 1 env ptr

��

Figure 1: Memory layout of a closure object.

By using such a construct, we may reap the benefits of OCaml’s high level tools for manipulating
algebraic data types, such as pattern matching. From the data-type definition, the OCaml compiler
generates a predictable memory layout for each of the constructors that is easily manipulated
from C or assembly code. Each constant constructor (one with no argument) is represented as
an unboxed OCaml integer starting from zero. OCaml provides unboxed values by tagging the
least significant bit, so the garbage collector can distinguish them from pointers. In our case, we
have that True is equal to the OCaml integer 2, and in C this is the integer 5. The non-constant
constructors (those with arguments) are tagged pointers to a block of 4n bytes, where n is the
number of constructor arguments. The tag is located in the byte preceding the block pointed to,
and the constructor tags are numbered in turn, starting from 0. As such, a DAIMI-Scheme closure
is represented with the Clo constructor and figure 1 shows how this is realized in the heap. The
first cell is a pointer to a memory block of size 2 × 32 bits. Immediately preceding the location
pointed to, is a 1-byte tag value that denotes the constructor used to create the data type. In
this case it is 4, as Clo is the fifth non-constant constructor of value. The next 31-bits represent
an unboxed integer that contains the index of the closure in our global code table. The following
1-bit is used to tag that the preceding value must not be interpreted as a pointer. The next 32-bits
contain a pointer to the environment list.

Not everything sits well with this approach to representing our DAIMI-Scheme objects. An
obvious problem is memory consumption. Our embedding into the algebraic data types of OCaml
forces all of our objects to be multiples of 4 bytes. For some of our objects this is wasteful. In the
case of characters we have at least 2 bytes that are not used for anything. Another disadvantage,
is that we must be careful not to invalidate the object model of OCaml, as that would break
the OCaml runtime system. This means, we cannot inject additional information in an object
hash or header, without being very sure that the object remains a valid OCaml object. We do
not portray to know the internals of OCaml nearly good enough to experiment with such hacks.
The few problems that we have with the current memory model are far from artificial. Large
objects means higher memory consumption, and the more memory we use, the more we stress the
garbage collector, thereby effecting the running time of our programs. A possible solution to the
above problems, is to maintain our own heap and do garbage collection ourselves. This is however
outside the scope of our project and we therefore move on to other topics.

2.2 Garbage Collection
In our project we rely on the garbage collector of OCaml to do the necessary cleaning for us.
Unfortunately, we found very little documentation about the current garbage collector. The most
recent publication (Doligez and Gonthier, 1994) describes a concurrent garbage collector that does
not seem to be the one in actual use. The most accurate description we have been able to find
is by Sestoft (1994), though it too has differences with the implementation shipped with OCaml
3.10.2.

The OCaml garbage collector is a generational garbage collector with two generations. The
young generation is called the minor heap and is used as a nursery for newly allocated objects. It
is allocated once with a fixed size, and uses a stop-and-copy collection strategy. The old generation
is named the major heap and may grow dynamically. The memory is handled by a linked list of
memory chunks and a corresponding free-list. The major heap uses an incremental mark-and-

2

sweep collection strategy. To avoid traversing the entire major heap, in order to collect the minor
heap, OCaml maintains a reftable that tracks all references from the major heap into the minor
heap.

As noted earlier, our object model can be grouped into two categories: values of constant
or non-constant constructors. Objects with a constant constructor, such as True, are placed as
unboxed values directly into the containing structure. For objects with non-constant constructors
the object is allocated on the heap and a pointer to the structure is added to the container. The
internal container structures we mentioned in the above are the special “registers” described in
appendix B.2. This includes a global result vector and temporary vector, along with temporary
argument vectors and environment lists. All of these structures are heap allocated. The global
ones, on interpreter start up, and the temporaries, as needed. We could optimize a bit here by
allocating the global containers outside the heap, as they are persistent and there sizes fixed. This
could reduce some work on the GC, as it would not attempt to copy the static containers around.

3 Interpreter
Before implementing the virtual machine we first evaluated various interpreter techniques in
OCaml. We summarise our finding and then describe the implementation that is actually used in
our virtual machine.

3.1 Exploration
Our interpreters all implement the same 5-opcode language that was used as part the Virtual
Machine course. The language consists of 5 byte codes numbered from 0 to 4 that each perform
some arithmetic or bit-shifting operation upon a global result value. Our interpreters can be found
in the file ocaml/interpret.ml.

Switch-based interpreter: Straightforward switching, on the untouched byte codes, is shown
in listing 2. This variant proved to be a bit faster then a comparable switch-based interpreter in
C. The speed increase is most likely due to the loop calls being in tail position. Thereby avoiding
the jump that occurs after a switch statement inside a while-loop in C.
let interp_str str =
let rec loop i r =
match str.[i] with
| ’0’ → r
| ’1’ → loop (i+1) (r+1)
| ’2’ → loop (i+1) (r-1)
| ’3’ → loop (i+1) (r lsl 1)
| ’4’ → loop (i+1) ((r lsl 16) lor (r lsr 16))

in loop 0 0

Listing 2: Switch-based interpreter.

Higher-order interpreter: An effective approach to avoid a jump, and thereby lower the
amount of branch mispredictions, is to remove the jump that brings us back to the match expression.
We would prefer to go directly to the case of the opcode in question. This style of implementation
is referred to as threaded code (Bell, 1973). Such an implementation is shown in listing 3, using
higher-order functions. Here the next opcode is invoked as a tail call to a member of the ops array,
essentially implementing a direct jump to the next opcode. We list both the translation from a
byte code string to an array of higher order functions that implement the byte code operations,
and the “interpreter” that simply invokes the first opcode.

3

let convert_direct str =
(∗ type oplabel = int → int → oplabel array → int ∗)
let oplabel0 = (fun r pc ops → r) in
let oplabel1 = (fun r pc ops → ops.(pc) (r+1) (pc+1) ops) in
let oplabel2 = (fun r pc ops → ops.(pc) (r-1) (pc+1) ops) in
let oplabel3 = (fun r pc ops → ops.(pc) (r lsl 1) (pc+1) ops) in
let oplabel4 = (fun r pc ops → ops.(pc) ((r lsl 16) lor (r lsr 16)) (pc+1) ops) in
let ops = Array.make (String.length str) oplabel0 in
for i = 0 to String.length str - 1 do
ops.(i) ← match (code str.[i] - code ’0’) with
| 0 → oplabel0
| 1 → oplabel1
| 2 → oplabel2
| 3 → oplabel3
| 4 → oplabel4

done;
ops

let interp_direct ops =
ops.(0) 0 1 ops

Listing 3: Higher-order threaded code interpreter.

The use of tail calls should ideally translate to direct jumps. This is however not the case in
OCaml. The assembly output of OCaml contains a, in our case, unnecessary call to the OCaml
subroutine caml_apply3. This is however easily repaired by post-processing the assembly output of
OCaml, as shown in listing 4.
op1: movl -2(%ecx, %ebx, 2), %edx # ops.(pc)

addl $2, %ebx # pc + 1
addl $2, %eax # r + 1

jmp caml_apply3 # unwanted jump, replaced by the next 2 commands
movl 8(%edx), %esi # function pointer of the OCaml closure
jmp *%esi # tail call

Listing 4: Repaired tail calls in direct threaded code.

After performing this repair, the above code achieves a running time very close to that of a direct
threaded variant in C. Some additional overhead is caused by operations for handling the tag bit
on OCaml integers. This appears in the opcodes that use shift operations.

First-order interpreter: A third alternative, for an interpreter in OCaml, is to denote the
byte codes in the form of a variant type. Such an interpreter is in listing 5. We have omitted the
conversion from a byte code string to the opcode array for brevity. This interpreter is essentially
the defunctionalized (Reynolds, 1998) variant of the direct threaded interpreter, i.e., a first order
interpreter. It is also identical to the first switch-based interpreter, except for the type dispatched
over. This interpreter is however faster, as the OCaml compiler knows the exact members of the
type and may generate the switch code more efficiently.
type opcode = Op0 | Op1 | Op2 | Op3 | Op4
let interp_defun ops =
let rec apply r pc =
match ops.(pc) with
| Op0 → r
| Op1 → apply (r+1) (pc+1)
| Op2 → apply (r-1) (pc+1)
| Op3 → apply (r lsl 1) (pc+1)
| Op4 → apply ((r lsl 16) lor (r lsr 16)) (pc+1)

in apply 0 0

Listing 5: First-order interpreter.

4

3.2 Implementation
Our development method for this project has been to first make it work, and then to make it
faster. Our interpreter is therefore implemented in straightforward fashion with emphasis on
correctness and clarity. The VML parser, found in the file dsvmopt/vml.cpp.ml, parses the
byte code files and hands these structures to the interpreter in the form of a few tables and a
byte-string that contains the actual byte codes to execute. The interpreter code is in the file
dsvmopt/interpretBits.cpp.ml. The interpret function sets up the “global” structures and
proceeds to interpret the byte codes. The interpreter itself consists of the three mutually recursive
functions visit, application and continue that are described below.

3.2.1 Visit

Most of the interpretive work takes place in visit. To parse the values from the byte code we use
the OCaml bitstring library which allows pattern matching within binary data (Jones). The visit

function parses the next opcode and switches to the case that handles that opcode. The code for
handling a VML move opcode is shown in listing 6. Here bitmatch is used to parse the arguments
of the move instruction. After parsing the arguments, we write the source value into the target
cell. Finally having removed 6 bytes, corresponding to the size of the move opcode, we continue
with a tail call to visit.
let visit bits env vec cont =
...
| OP_MOVE →
let (sscope, sindex, tscope, tindex) = bitmatch bits with

{ sscope : 8
; sindex : 16 : nativeendian
; tscope : 8
; tindex : 16 : nativeendian }
→ (sscope, sindex, tscope, tindex)

in (get tscope env vec).(tindex) ← (get sscope env vec).(sindex);
visit (dropbits (6*8) bits) env vec cont

...

Listing 6: Interpreter code to handle a move instruction.

The reader might have noticed the seemingly unnecessary let-binding around the bitmatch ex-
pression. This binding is required since the syntactic transformation performed by the bitstring
preprocessor does not respect tail calls. If the call to visit is not in tail position our interpreter
will soon blow its call stack. It would be nice to repair the bitstring library to avoid this, but that
is outside the scope of this project.

3.2.2 Application

The application function handles all applications of applicable objects. An applicable object can
be a builtin function (also referred to as a primitive), a closure, or a continuation. The two builtin
functions apply and call/cc, represented as the value constructors Apply and CallCC respectively,
are treated specially.

• The apply function is used to apply a function to a list of arguments. For example, the
program (apply + ’(1 2 3)) would have the value 6. In the case of Apply we need to convert
the second argument from a first-class list, to an internal OCaml vector.

• The call/cc function captures the current continuation and hands it as an argument to the
function supplied to call/cc. In the interpreter, this means coping the current control stack,
denoted by cont, into a first-class value with the constructor Cont. The argument to call/cc
is then applied to the continuation. Now, Cont is itself an applicable value, denoting a
continuation, and when applied, it will write its argument in the result vector and return to
the last frame in the control stack it is holding, thereby discarding the current control stack.

5

3.2.3 Continue

The continue function simply continues execution in some control frame. If the frame is the initial
frame, it stops execution by returning the top most value in the result vector.

3.2.4 Builtin Functions

All of the builtin functions are implemented in the file dsvmopt/builtins.cpp.ml. Each function
has the type builtin, as shown in listing 1, taking an argument array, the result array and a resume
continuation. Listing 7 shows the implementation of the DAIMI-Scheme integer? primitive.
let integer_p actuals result resume =
result.(0) ← mkBool
(match actuals.(0) with

| Int _ → true
| _ → false);

resume ()

Listing 7: Implementation of the integer? primitive.

3.2.5 Considerations

One problem with the current implementation is the interdependency between the interpreter
and the type of values. We see that the type of control frames (i.e., cf) is dependent on the
implementation strategy of the interpreter, but this type is depended upon by the type of objects
(i.e., value). This makes it hard to implement an alternative interpreter with a different type of
control frames. Possible solutions are to either add the type of control frames as a type parameter
to value; or alternatively parameterise the Values module by the type of control frames, i.e. make
it a functor, in ML terminology. After such a modification we could supply several interpreter
implementations that could be selected by a flag to the VM.We have done neither, as our remaining
time has been spent on dynamic compilation.

4 Dynamic Compilation
Our DAIMI-Scheme VM supports just-in-time compilation as its major optimisation feature. This
technique involves compilation of VML byte codes into x86 machine instructions, at runtime, using
closures as the basic unit of compilation. The pipeline constitutes a single linear pass over the
byte codes with a fairly naive translation into target instructions. No control flow analysis or
subsequent optimisations are carried out as part of the compilation.

4.1 Architecture
The dynamic compilation system is comprised of several smaller components.

Code Generation A code generator is found in the file dsvmopt/codegen.cpp.ml. The code
generator resembles the interpreter loop in structure, and handles a linear sequence of individual
byte codes and the corresponding emission of the target instructions. The actual emission is done
through a code emitter object which is passed around in the code generator. The emitter object
is a tuple consisting of a code buffer, which is a mutable string, a program counter indexing the
buffer, a delay list to carry out instruction emission that has been paused, and a mark list to allow
tagging specific addresses in the emitted code.

The code emitter module consists of several functions that lift the generation of x86 instructions
to a slightly higher level of abstraction. These functions can be seen as a small domain specific
assembly language which hides the somewhat complex details of x86 opcodes and arguments.

6

Listing 8 shows an example of a lookup, into the environment, written in the assembly language.
The first line is an example of a simple machine instruction abstraction. In this case, a mov-
instruction is generated which copies the contents of the register containing the environment
address into a working register. The mov-instruction can take registers, integer constants, and
memory operands as arguments. For instance, in the third line the result of (operand_mem reg_work)

is given as the first argument. This line results in copying the contents of the memory location,
referenced by the work register, into the work register. Similar functions exist for referencing
memory addresses using memory displacement constants and scale-index-base values. The mov-
function transparently handles all the specific details of the opcode layout based on the input
parameters.
e $ mov reg_env reg_work
$ repeat n (mov (operand_disp reg_work 4) reg_work) (∗ cd . . . dr ∗)
$ mov (operand_mem reg_work) reg_work (∗ car ∗)
$ genModify reg_work i eax

Listing 8: Traversal of a linked list in embedded assembly language.

A nice syntax for writing our assembly code can be obtained with the simple use of an infix
operator. The $-operator is a left-associative infix operator which applies its right argument
(expected to be a function) to its left. The assembly process is bootstrapped with an emitter
object in the first line. As long as every subsequent function has the type emitter → emitter the
emitter object is simply passed along the chain of assembly instructions and updated along the
way. This structure also enables us to define small and simple helper functions and use them
in the instruction pipeline. The function repeat in the second line of Listing 8 is an example of
such a function. It emits the given instruction n times. The repeat function is curried and has
type int → (emitter → emitter) → emitter → emitter. The result of supplying the arguments n and
mov (...) is a function of type emitter → emitter which is of the desired type.

To support compilation of branches, we need to relate byte code addresses with the x86 machine
code addresses. Adresses in VML are given relative to the beginning of the program and for
simplicity every emitted x86 address is an absolute 32-bit memory location. Every time we start
emitting code for a given byte code we initially call the mark function and pass the total size of
the current byte code, wrapped in the Opcode data constructor, as argument. This function will
extend the mark list of the emitter with a tuple containing the argument and the current pc of
the emitter. Whenever we need to do an x86 branch instruction we emit the instruction with an
arbitrary 32-bit address, immediately followed by a call to the mark function. Only this time, we
supply the byte code address of the jump wrapped in the Jump data constructor. Listing 9 shows
an example of this. When all opcodes have been emitted we can start injecting the correct branch
addresses by doing a traversal of the reversed mark list.
| { OP_JUMP : 8
; offset : 32 : nativeendian
; bits : -1 : bitstring }
→

e $ mark (Opcode 5)
$ jmp (Int 0)
$ mark (Jump (Int32.to_int offset))
$ genOpcodes bits

Listing 9: Using the mark function for branching.

Compilation Strategy We have chosen to subdivide the source program into units associated
with their respective functions. As such, functions comprise the basic unit of compilation. This
means that the byte codes in the main program will never be compiled. However, this code
typically has linear execution as loops are implemented by means of tail calls. In other words,
the main program is only executed once and compiling it would most likely be a wast of time
and space. This of course depends on the overall interpreter speed measured against the time it
takes to compile the byte codes. As of now, we compile functions when creating a closure. The

7

compiled code is then saved for reuse if a closure of the same function is created again. Compiling
on all closure creations pays off because our interpreter is fairly slow. If this were not the case
it becomes interesting to consider other more advanced strategies, such as invocation counting
or sample based compilation by using a timer. Right now we have taken the simple approach,
although avoiding the compilation overhead for one-shot functions would be desirable.

Code Execution Once the code has been emitted into an OCaml string, we need to be able to
transfer control to it. This is done by means of the OCaml foreign function interface that enables
us to call C functions from within OCaml. For this purpose we have a single C file dsvmopt/jit.c
with a small number of functions for handling the execution of compiled code.

• An initialisation function (init) is called one time by the interpreter to set up the execution
environment.

• An execution function (exec) takes the code string and an offset into the code as arguments
and transfers control to this memory location with a goto statement.

• Other functions for handling instantiation and modification of OCaml values as well as
handling function calls back into OCaml code.

In OCaml code the application function of the interpreter, described in section 3.2.2, is extended
with a match for a compiled closure with the value constructor Comp. If the arity of the closure
matches the argument list the exec function, which is yet another extension to the interpreter, is
called. The exec function simply invokes the external C function for executing the machine code.
Depending on the return value of this execution the interpreter will do one of the following actions.

• Continue with the current continuation. This happens if the closure simply reached its return
statement, thus returning normally. Marked by returning a pc of 0.

• If the execution returns a closure and a vec array then this closure should be applied to the
vector with the current continuation. This corresponds to a tail call being made from inside
the generated code. Marked by returning a pc of 1.

• If the execution returns a pc larger than 1, along with a closure, vec, env and a size, we have
met a call opcode. This means saving the callers execution state as a special control frame
(CFrame), and then applying the closure to perform the call.

4.2 Working with the OCaml GC
When operating directly on the internal representations of OCaml data structures it is extremely
important to know which actions can potentially trigger GC operations, in order to handle the side
effects of such an operation correctly. We must also ensure conformance with OCaml’s technique
for differentiating pointers from non-pointers. We identify the following ways of triggering a GC
call, and potentially invalidating object locations:

• memory allocation;

• callbacks to OCaml, as control is transfered to the OCaml runtime system.

Meanwhile the following invariants are required to hold at any given time while running inside the
generated machine code:

• registers esi and edi (aliased as reg_vec and reg_env) must point to the current argument
vector and the environment list, respectively;

• the res, tmp, glo, and lib members of the C structure, named statics, points to their corre-
sponding OCaml data objects;

8

• the current_code variable points to the address of the code object currently being executed.

We rely heavily on the OCaml C macros in order to ensure these invariants. The CAMLparamN

macros ensure that references are updated if the referenced objects are relocated during a GC
call. The esi and edi registers are then updated by passing them as arguments to the C function
and having the C function use CAMLparamN to register them with the GC. On return the correct
references are then popped back into the registers. Global variables are easily registered with the
GC by means of the caml_register_global_root macro. This macro need only be called one time
in the initialisation phase. As code objects are OCaml data structures they too can be relocated
upon GC calls. If this happens while executing a C function we get undefined behaviour when
returning as the code we are trying to return to is no longer there. We therefore need to make sure
that the eip register is restored correctly. This is achieved with the current_code variable which
is also bound by the caml_register_global_root macro at initialisation and at every call to exec we
update the current_code pointer. We do not need to worry about nested calls in compiled code as
function calls always return fully from compiled code and function application is handled in our
runtime system. To secure the return address each callback in C must locate the return address in
the current stack frame and subtract current_code from it. This gives us a relative offset into the
code block. Just before we return, we add current_code to the offset (current_code could have been
changed by the GC). The resulting value is written back as the return address in the stack frame.
This ensures correct restoration of the eip register on function return. The macros SAVE_EIP and
RESTORE_EIP handle the described operations.

4.3 Optimisations
By using dynamic compilation we obtain a decrease in overall running time. This is mainly because
we compact a series of byte codes, which otherwise requires a switch in the interpreter for each and
every byte code, into a single entity that can be executed without the overhead of the interpreter
switch. At this point we do not exploit much of the information available at compile time that
could enable further optimisations.

We do however support a faster allocation mechanism based on the abstract data type being
allocated. If an abstract data type is known to have a constant constructor at compile time we
simply generate code for allocating the value corresponding to the data type.

4.4 Future optimisations
Exploiting the compile time information gives rise to a number of possible optimisations that
would be interesting to implement.

An example of such an optimisation would be to inline builtin functions, thus avoiding an escape
into the OCaml runtime system. When compiling the call instruction we can easily determine
whether it is a call to a builtin function and inline the call instead. Some builtins that work on an
arbitrary number of parameters, such as the arithmetic operators could furthermore be specialised
for the many cases where only two arguments are given. They could even be specialised to work
on unboxed integers, hereby saving a lot of memory operations. However, this is not as simple as
it first seems. Even builtin functions can be overwritten in Scheme. So a protection mechanism
would be needed to fallback if our assumptions did not hold.

Another interesting optimisation would be to do inline caching on closure calls as the envi-
ronment is known at compile time. By doing this it is possible to specialise the closures to work
on a specific environment. The generated code would need to guard the applications in case the
environment has been destructively modified. In most cases however, they remain fixed, so one
could expect a considerable performance gain. Also, implementing such an optimisation would
require us to do separate compilation for each closure creation, instead of our current strategy of
reusing compiled function code, thus maintaining several compiled instances of the same function.

9

cpstak
ctak

deriv
destructive

div-iter

div-rec

dscmp
fib fibc

fprint
fread

hanoi
nqueens

puzzle
tak takl

takr
traverse

travinit

triangl

Interpretive Dynamic Compilation Fast allocation Final system

Figure 2: Benchmarks for several variants of the VM.

5 Results
During development we have used a benchmark suite to obtain some empirical evidence that our
optimisations were in fact optimisations. All the benchmarks have been done on a system running
the 32-bit version of the Ubuntu GNU/Linux distribution version 8.10. The system had an AMD
Athlon 64 FX-55 Processor with 2613.339 MHz and a 1024 KB cache, and 2 GB of main memory.
All benchmarks have been run from a terminal after shutting down the X11 graphical environment
and other unwanted tasks in an attempt to minimize scheduling.

5.1 Execution Time
Some of the benchmarks are shown in Figure 2. We have included four runs showing different
phases in our VM development. The first (blue) shows a purely interpretive execution and the
other three with dynamic compilation enabled. The second (orange) is taken at the time the
VM gained full dynamic compilation support. The last two are further optimizations. The third
benchmark (red) is after implementing fast allocation, by avoiding callbacks for unboxed objects
and using better allocation mechanisms for small objects and further avoiding expensive modifi-
cation operations where possible. The last benchmark shows the final running time of the system
after a few other optimizations, such as adding a RELEASE flag to avoid overhead from debugging
and development code.

We have purposely omitted the lattice benchmark from the diagram as it is remarkably longer
than the rest. All of the benchmarking data is located as text files in the dsvmopt/marks directory.

10

cpstak
ctak

deriv
destructive

div-iter

div-rec

dscmp
fib fibc

fprint
fread

hanoi
nqueens

puzzle
tak takl

takr
traverse

travinit

triangl

Our VM DAIMI-Scheme C-VM

Figure 3: The DAIMI-Scheme C-VM compared to our VM.

As can be seen from Figure 2, we have achieved a significant speed up relative to the speed
of our interpreter. The final result is about a factor 3 faster, and there is still plenty of room
for improvement within the system. Compared to the C implementation, developed as part of
Danvy’s compiler course, our VM is about a factor 4 slower as shown in Figure 3. That is however
less than we had expected as our first variant of the VM was much slower than the C version.
Unfortunately, we only have access to the binary and can not compare implementation strategies.

5.2 Memory Consumption
Since we are using OCaml for all of our memory we have little insight into exactly where our
memory is going. We have added a -stats flag that prints out information obtained by the OCaml
GC. The memory consumption of running our VM with dynamic compilation disabled and enabled
is shown in Figure 4. These numbers indicate a few puzzling things. First we can see that the
total amount of allocated kilobytes falls with about 60.000.000. The only reasonable explanation
seems to be that our interpreter loop (in visit) is allocating a lot of temporary structures. This
is further supported by observing that our peek memory usage without dynamic compilation is
lower than with it enabled, also the major heap is smaller. As noted in section 3.2.1, we wrap all
bitmatch expressions with a let. This could contribute to a large amount of temporary memory
usage. We have not looked closely at the syntactic transformations performed by the bitstring
library and that too could contain some unnecessary allocations. These observations motivate a
closer look at our interpreter and show that we still have much room for improvement.

11

Without Jit With Jit
Minor heap size 128 k 128 k
Major heap size 12.720 k 14.160 k
Major live memory 8.666 k 11.152 k
Max live memory 16.320 k 17.904 k
Minor allocations 65.421.794 k 5.569.045 k
Major allocations 182.377 k 50.857 k
Total allocations 65.422.535 k 5.570.788 k
Minor collections 511.111 43.513
Major collections 154 40
Compactions 5 1

Figure 4: Memory consumption for dsvmopt/benchmarks/dscmp.

5.3 Conclusion
The final outcome of our project is a complete virtual machine for the DAIMI-Scheme language. By
complete we mean that it supports the entire language specification with reasonable performance.
The VM contains one major optimization technique, namely dynamic compilation, and we have
shown that it greatly improves the overall performance of the system. The entire system is written
in less than 2000 lines of code, according to sloccount, with less than 100 lines of C. We find
this remarkably low and attribute it to the expressiveness of OCaml. We have also encountered
shortcomings, such as the descriptive types in OCaml. For our purpose we would have preferred
prescriptive types allowing more control over the exact representation in memory.

During the project we have been exposed to two very different levels of abstraction. The high
level functional paradigm of OCaml and the very low level architecture that is IA32. This has
especially shown itself with respect to debugging that turns out to be extremely difficult in the
latter, whereas in OCaml, programs have a tendency to work if they type check.

Our VM implementation is fairly straightforward. At several points we have noted possibilities
for optimizations that we have not pursued. This has been necessary to stay on track with the goals
of the project. There are considerably many ways to optimize the execution of DAIMI-Scheme
programs and during this project we have developed only one.

We would like to thank Olivier Danvy for his kind help in extending the DAIMI-Scheme
compiler and providing helpful comments during the project.

References
James R. Bell. Threaded code. Commun. ACM, 16(6):370–372, 1973.

Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection for multiprocessor sys-
tems. In POPL ’94: Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 70–83, New York, NY, USA, 1994. ACM. ISBN 0-89791-636-0.

Richard Jones. The ocaml bitstring library. http://code.google.com/p/bitstring.

J. Rees (eds.) R. Kelsey, W. Clinger. Revised5 report on the algorithmic language scheme, higher-order
and symbolic computation, August 1998.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In Higher-Order
and Symbolic Computation 11(4), 363–397. Reprinted from the proceedings of the 25th ACM National
Conference, 1998.

Peter Sestoft. The garbage collector used in caml light. Internet, October 1994. URL
http://pauillac.inria.fr/˜doligez/caml-guts/Sestoft94.txt.

12

A Usage
This appendix briefly describes how the program source is structured, how to build the programs,
and how to use the programs. The source distribution has the following hierarchy

daimi-scheme contains the entire DAIMI-Scheme system. Documentation is located at the top
level in several text files and the bin directory contains scripts to run the compiler, interpreter
and assembler.

dsvmopt contains all the VM code. More precisly the VM code consists of the OCaml files:
builtins.cpp.ml, codegen.cpp.ml, emitter.cpp.ml, interpretBits.cpp.ml,
main.cpp.ml, utils.cpp.ml, values.cpp.ml, vml.cpp.ml;
and the C files: defines.h and jit.c.

dsvmopt/tests contains a few of our own tests, and the runtests script to run all DAIMI-
Scheme tests on the VM. Usage of this script is described in appendix A.3.

dsvmopt/benchmarks contains all the benchmarks we have used during development and the
runbenchmarks script to run all the benchmarks on our VM. Usage of this script is described
in appendix A.4.

dsvmopt/marks contains the output of several benchmarks taken during development.

ocaml contains some initial exploration of the OCaml language for writing a (efficient) inter-
preters.

A.1 Building
To build the VM the following software components are required:

• OCaml = 3.10.2

• findlib (ocamlfind) >= 1.2.1

• bitstring >= 1.9.7

• GNU Toolchain (make, gcc and so on)

These tools are all installed on the DAIMI system. To make the OCaml related tools available
you must modify a few environment variables. Make sure to add the new paths at the start of the
environment variables as they must shadow over already installed OCaml components.

• add /users/contrib/ocaml/bin to PATH

• add /users/contrib/ocaml/lib to LD_LIBRARY_PATH

Now, from within the dsvmopt directory, type
make

After that the binary dsvmopt should be available in the directory of the same name.

A.2 Running
To run the VM you must use a machine with the IA32 architecture. The following software is
required:

• Petite Chez Scheme >= 7.0

• DAIMI-Scheme compiler and assembler

13

From within the dsvmopt directory you may compile a DAIMI-Scheme script to the binary
VML format with the following commands:
chmod +x compile.sh
./compile.sh tests/fib.scm

Or alternatively:
chmod +x ../daimi-scheme/bin/*
../daimi-scheme/bin/dscomp tests/fib.scm
../daimi-scheme/bin/dsasm tests/fib.dsa

After compiling the program, it can be run with
./dsvmopt -jit tests/fib.dsb

Notice the file ending .dsb. The above requires that you have successfully compiled our VM
as described above in A.1. If not, you may use the precompiled binary that is in our source
distribution as dsvmopt/dsvmopt-pre. Depending on the method used to build the VM, several
flags can be accepted by the VM. For a complete list run
./dsvmopt -help

A.3 Testing
During the development process we have relied heavily on a test suite consisting of 313 DAIMI-
Scheme test programs in order to test various corners of the language semantics. This has been a
valuable tool when doing incremental changes to the running VM. The tests are located in:

• dsvmopt/tests,

• daimi-scheme/Tests, and

• daimi-scheme/DAIMI-Scheme/tests.

To run the test suite use the runtests script. First the script must be made executable with
the following command:
chmod +x tests/runtests

The tests can be run in two modes, with or without dynamic compilation enabled. To run the
tests without dynamic compilation type:
./tests/runtests

To run the test suite with dynamic compilation enabled type:
./tests/runtests -jit

The test script will run each DAIMI-Scheme program both on a reference implementation and on
our own VM and compare outputs in order to determine whether the test run was successful. For
each completed test a dot will be printed to stdout. If a test fails a more detailed description of
the two test runs will be printed.

A.4 Benchmarking
The benchmark suite consist of Scheme programs from the Chicken Scheme distribution. We have
ported 21 of then to DAIMI-Scheme. The programs range in complexity from a simple recursive
tower of hanoi algorithm to a full implementation of the DAIMI-Scheme compiler which compiles
itself. All benchmarks are placed in dsvmopt/benchmarks along with the unsupported Chicken
Scheme programs.

The entire benchmark suite may be run using the runbenchmarks script. To do this, first make
the script executable with the following command:
chmod +x benchmarks/runbenchmarks

14

The benchmarks can be run in two modes with or without dynamic compilation enabled. To run
the naive interpreter without dynamic compilation use the following command:
./benchmarks/runbenchmarks

To run the benchmarks with dynamic compilation enabled type:
./benchmarks/runbenchmarks -jit

For each completed benchmark program a dot will be printed to stdout. By default benchmark
results will be written to benchmarks/benchmark.txt but it is possible to supply an alternative
output file with the following command:
./benchmarks/runbenchmarks -jit benchmarks/some-file.txt "Short Name"

The "Short Name" string will supply a name to the benchmark output which is useful when com-
paring different runs later on. Multiple benchmark outputs can be compared using the following
command:
make parsebenchmarks
./parsebenchmarks file1.txt file2.txt ...

This will print a nice listing of the input benchmark files to stdout, comparing the running times
of each individual benchmark program.

B DAIMI Scheme
The DAIMI-Scheme language is a proper subset of the Scheme language (R. Kelsey, 1998) as
defined in the R5Rs Scheme language specification. The language was designed for educational
purposes and was used in the compiler course at DAIMI at the University of Aarhus in the period
19__-2003 Further documentation can be found along with all the course material at the following
location on the daimi NFS:
/users/courses/dOvs/Project03/

or as part of our project tarball in daimi-scheme. It is possible to find the source code for a
DAIMI-Scheme compiler and an interpreter for the VML-language, both implemented in DAIMI-
Scheme. Furthermore an optimised interpreter written in C exists in binary format. A compre-
hensive collection of test libraries can also be found.

B.1 VML Assembly Language
The VML assembly language is the intermediate representation of a DAIMI-Scheme program. It
comes in two versions: A textual representation with an s-expression syntax and a more compact
binary representation. A full description of VML can be found at

B.2 Virtual Machine Registers
Section on VM registers as defined by the DAIMI-Scheme specification. Original text is located
in daimi-scheme/04DAIMI-Scheme-virtual-machine.txt.

Control registers:

• ip: instruction pointer
• cont: continuation

Environment registers:

• env-lib: vector holding the values of the predefined variables
• env-glo: vector holding the values of the global variables

15

• env-lex: list of vectors holding the values of the lexical variables
• env-tmp: vector holding the values of the temporary variables

Auxiliary registers:

• aux-res: vector holding the value(s) last returned from a call
• aux-vec: vector for an extension of the lexical environment

Registers are implemented as pointers to vectors:

• ip is assigned during the fetch-decode-execute loop of the byte-code interpreter;

• cont is assigned during the execution of a call instruction (but not during the execution of
tail-call instruction) and read & re-assigned during the execution of a return instruction;
in addition, it is read when call/cc is called and re-assigned when continuation closures are
applied;

• env-lib is initialized to a vector of values, and then it never changes (but the vector entries
may change);

• env-glo is initialized to a vector of values, and then it never changes (but the vector entries
may change);

• env-lex is frequently assigned: it is saved and initialized when a closure is activated (in call
and tail-call), it is modified during the execution of an extend instruction, and it is restored
during the execution of a return instruction;

• env-tmp is assigned during the initialization of the VM; it denotes a vector whose entries
are frequently assigned;

• aux-res is assigned during the initialization of the VM; it denotes a vector that, in the current
specification of DAIMI-Scheme, is always of length 1; this entry is always assigned before
executing a return instruction;

• aux-vec is assigned with fresh vectors from the heap.

The vectors pointed to by the registers are:

• a vector holding the values of the predefined variables (held in env-lib);

• a vector holding the values of the global variables of the program (held in env-glo);

In addition, there is also:

• a table of lambdas containing their arity and a pointer to their entry point, initialized with
those declared in the program;

• a table of symbols initialized with those declared in the program;

• a table of strings initialized with those declared in the program.

NB. Symbols and strings are specified as part of the load instruction in the assembly format. The
binary format, however, has them factored in tables (see the specification of the load instruction
below).
The lists pointed to by the registers are:

• a list of vectors of values, one for every lexical-environment extension (held in env-lex);

• a list of activation records, one for every call (held in cont).

An activation record consists of

16

• a list of activation records (a previous value of cont);

• a list of environment extensions (a previous value of env-lex);

• a pointer to an instruction (a future value of ip); and

• env-tmp[0], ..., env-tmp[n], for some n.

17

