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Abstract. We present a purely syntactic theory of graph reduction for
the canonical combinators S, K, and I, where graph vertices are rep-
resented with evaluation contexts and let expressions. We express this
syntactic theory as a reduction semantics. We then factor out the intro-
duction of let expressions to denote as many graph vertices as possible
upfront instead of on demand, resulting in a second syntactic theory, this
one of term graphs in the sense of Barendregt et al. We then interpret
let expressions as operations over a global store (thus shifting, in Stra-
chey’s words, from denotable entities to storable entities), resulting in a
third syntactic theory, which we express as a reduction semantics. This
store-based reduction semantics corresponds to a store-based abstract
machine whose architecture coincides with that of Turner’s original re-
duction machine. The three syntactic theories presented here therefore
properly account for combinatory graph reduction As We Know It.

1 Introduction

Fifteen years ago [3, 4, 24], Ariola, Felleisen, Maraist, Odersky and Wadler pre-
sented a purely syntactic theory for the call-by-need λ-calculus. In retrospect,
their key insight was to syntactically represent ‘def-use chains’ for identifiers
with evaluation contexts. For example, here is one of their contraction rules:

(λx.E[x]) v → (λx.E[v]) v

In the left-hand side, an identifier, x, occurs (i.e., is ‘used’) in the eye of an eval-
uation context, E: its denotation is therefore needed.1 This identifier is declared
(i.e., is ‘defined’) in a λ-abstraction that is applied to a (syntactic) value v. In
the right-hand side, v hygienically replaces x in the eye of E. There may be
other occurrences of x in E: if another such one is needed later in the reduction
sequence, this contraction rule will intervene again—it implements memoization.

In this article, we take a next logical step and present a purely syntactic
theory of graph reduction for the canonical combinators S, K and I. Our key
technique is to syntactically represent def-use chains for graph vertices using
evaluation contexts and let expressions declaring unique references. For example,

1 The notation E[t] stands for a term that uniquely decomposes into a reduction
context, E, and a subterm, t.



the K combinator is traditionally specified as K t1 t2 = t1, for any terms t1 and
t2, a specification that does not account for sharing of subterms before and after
contraction. In contrast, our specification does account for sharing, algebraically:

let x2 = K in E2[let x1 = x2 t1 in
E1[let x0 = x1 t0 in

E0[x0]]]

→ let x2 = K in E2[let x3 = t1 in
let x1 = x2 x3 in
E1[let x0 = x3 in

E0[x0]]]
where x3 is fresh

This contraction rule should be read inside-out. In the left-hand side, i.e., in the
redex, a reference, x0, occurs in the eye of an evaluation context: its denotation
is therefore needed. The definiens of x0 is the application of a second reference,
x1, to a term t0: the denotation of x1 is therefore also needed. The definiens
of x1 is the application of a third reference, x2, to a term t1: the denotation
of x2 is therefore also needed. The definiens of x2 is the K combinator. In the
right-hand side, i.e., in the contractum, a fresh (and thus unique) reference, x3,
is introduced to denote t1: it replaces the application of x1 to t0. Reducing the K
combinator is thus achieved (1) by creating a fresh reference to t1 to share any
subsequent reduction in t1,2 and (2) by replacing the reference to the application
x1 t0 by x3. There may be other occurrences of x0 in E0: if another such one
is needed later in the reduction sequence, this contraction rule for K will not
intervene again—its result has been memoized.

In Section 2, we fully specify our syntactic theory of combinatory graph
reduction as a reduction semantics, and we then apply the first author’s pro-
gramme [10, 11] to derive the first storeless abstract machine for combinatory
graph reduction, in a way similar to what we recently did for the call-by-need
λ-calculus [13].

Our syntactic theory introduces let expressions for applications on demand.
In Section 3, we preprocess source terms by introducing let expressions upfront
for all source applications, and we present the corresponding reduction semantics
and storeless abstract machine. The preprocessed terms essentially coincide with
the term graphs of Barendregt et al. [7].

In Section 4, we map the explicit representation of graph vertices as let
headers to implicit references in a global store. Again, we present the corre-
sponding store-based reduction semantics and store-based abstract machine.
This store-based abstract machine essentially coincides with Turner’s original
graph-reduction machine [30]. This coincidence provides an independent, objec-
tive bridge between the modern theory of combinatory graph reduction and its
classical computational practice.

Prerequisites and notations: We expect an elementary awareness of the S, K
and I combinators and how combinatory terms can be reduced to head normal
form, either in principle (as a formal property in Combinatory Logic [6]) or in
practice (as a stack-based graph-reduction machine [26, 30]). We also assume a
basic familiarity with the format of reduction semantics and abstract machines

2 References ensure sharing of subterms: they are uniquely defined, but they can have
many uses. References can be freely duplicated, but what they refer to, i.e., their
denotation, is not duplicated and is thus shared.
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as can be gathered, e.g., in the first author’s lecture notes at AFP 2008 [11]; and
with the concept of term graphs, as pedagogically presented in Blom’s PhD dis-
sertation [8]. In particular, we use the terms ‘reduction context’ and ‘evaluation
context’ interchangeably.

For a notion of reduction R defined with a set of contraction rules, we define
the contraction of a redex r into a contractum t as (r, t) ∈ R. We use →R for
one-step R-reduction, and �R for the transitive-reflexive closure of→R. A term
t is in R-normal form (R-nf) if t does not contain a redex of R.

Pictorial overview:

terms graphs store
reduction semantics Section 2.1 Section 3.1 Section 4.1

abstract machine Section 2.2 Section 3.2 Section 4.2

2 Two inter-derivable semantic artifacts
for storeless combinatory graph reduction

Our starting point is the following grammar of combinatory terms:

t ::= I | K | S | t t

So a combinatory term is a combinator or a combination, i.e., the application of
a term to another term.

We embed this grammar into a grammar of terms where sub-terms can be
referred to through let expressions and where a program p is an initial term t
denoted by a reference whose denotation is needed:

t ::= I | K | S | t t | let x = t in t | x
p ::= let x = t in x

In this grammar, a term is a combinatory term (i.e., a combinator or a combina-
tion), the declaration of a reference to a term in another term, or the occurrence
of a declared reference. This grammar of terms is closed under contraction.

In our experience, however, there is a better fit for the contraction rules,
namely the following sub-grammar where a denotable term is an original com-
binatory term or a term that generalizes the original program into declarations
nested around a declared reference:

p ::= let x = d in x
d ::= I | K | S | d d | t
t ::= let x = d in t | x

This grammar of terms excludes terms with let expressions whose body is a
combinator or a combination. It is closed under contraction.

At this point, it would be tempting to define reduction contexts to reflect
how references are needed in the reduction process:

Reduction Context 3 E ::= [ ] | let x = d in E | let x = E d in E[x]
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The constructor “let x = d in E” accounts for the recursive search for the
innermost reference in a term. The constructor “let x = E d in E[x]” accounts
for the need of intermediate references.

In our experience, however, there is a better grammatical fit for contexts,
namely one which separates the search for the innermost reference in a term and
the subsequent construction that links needed references to their declaration,
i.e., usage to definition. The former gives rise to delimited reduction contexts
and the latter to def-use chains:

Reduction Context 3 E ::= [ ] | let x = d in E
Def-use Chain 3 C ::= [ ] | let x = [ ] d in E[C [x]]

2.1 A reduction semantics

Here is the full definition of the syntax:

Program 3 p ::= let x = d in x
Denotable Term 3 d ::= I | K | S | d d | t

Term 3 t ::= let x = d in t | x
Reduction Context 3 E ::= [ ] | let x = d in E

Def-use Chain 3 C ::= [ ] | let x = [ ] d in E[C [x]]

Reduction contexts reflect the recursive search for the innermost reference in a
term. While returning from this search, def-use chains are constructed to connect
each reference whose denotation is needed with its declaration site. We abbrevi-
ate let x = [ ] d in E[C [x]] as (x, d, E) · C and we write Πi=n

0 (xi, di, Ei) · C as
short hand for (xn, dn, En) · . . .· (x0, d0, E0) · C , and |C | for the length of C ,
so that |Πi=n

0 (xi, di, Ei) · [ ]| = n+ 1.

Axioms (i.e., contraction rules): Figure 1 displays the axioms. Each of (I ), (K )
and (S ) is much as described in Section 1, with the addition of the inner def-use
chain: it carries out a particular rearrangement while preserving sharing through
common references.3

In the left-hand side of (comb), a reference, x0, occurs in the eye of the current
def-use chain, C : its denotation is therefore needed. Its definiens is a combination
of two denotable terms, d0 and d1. In the right-hand side, a fresh reference, x1, is
introduced to denote d0. This fresh reference extends the current def-use chain
for d0, thereby ensuring that any subsequent reduction in d0 is shared.4 This
specific choice of d0 ensures that any redex found in a subsequent search will be
on the left of this combination, thereby enforcing left-most reduction.

The axiom (assoc) is used to flatten let expressions,5 and the axiom (ref ) to
resolve indirect references.
3 On the right-hand side of (I ), (K ) and (S), we have kept E0[C [x0]] in order to

highlight each particular rearrangement. It would be simple to “optimize” these
right-hand sides by taking advantage of [a subsequent use of] (ref ) and (comb), so
that, e.g., the right-hand side of (K ) contains E0[C [x3]] instead.

4 If d0 is already a reference, it is already part of a def-use chain and no contraction
need take place: let x0 = x d1 in E0[C [x0]] is not a redex.

5 There is no need for the condition “x1 does not occur free in E0” since each reference
is unique.
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(I ) let x1 = I in E1[let x0 = x1 d0 in
E0[C [x0]]]

→ let x1 = I in E1[let x0 = d0 in
E0[C [x0]]]

(K ) let x2 = K in E2[let x1 = x2 d1 in
E1[let x0 = x1 d0 in

E0[C [x0]]]]

→ let x2 = K in E2[let x3 = d1 in
let x1 = x2 x3 in
E1[let x0 = x3 in

E0[C [x0]]]]
where x3 is fresh

(S) let x3 = S in
E3[let x2 = x3 d2 in

E2[let x1 = x2 d1 in
E1[let x0 = x1 d0 in

E0[C [x0]]]]]

→ let x3 = S in
E3[let x4 = d2 in

let x2 = x3 x4 in
E2[let x5 = d1 in

let x1 = x2 x5 in
E1[let x6 = d0 in

let x0 = (x4 x6) (x5 x6) in
E0[C [x0]]]]]

where x4, x5 and x6 are fresh
(comb) let x0 = d0 d1 in E0[C [x0]] → let x1 = d0 in let x0 = x1 d1 in E0[C [x0]]

where d0 is not a reference
and x1 is fresh

(assoc) let x0 = (let x1 = d1 in t0) in E0[C [x0]] → let x1 = d1 in let x0 = t0 in E0[C [x0]]
(ref ) let x0 = x1 in E0[C [x0]] → let x0 = x1 in E0[C [x0]]

Fig. 1. Reduction semantics for combinatory graph reduction: axioms

Inside-out recomposition of a reduction context with a term:

〈[ ], t〉io ⇑rec t
〈E, let x = d in t〉io ⇑rec t′

〈let x = d in E, t〉io ⇑rec t′

Outside-in recomposition of a reduction context with a term:

〈[ ], t〉oi ⇑rec t
〈E, t〉oi ⇑rec t′

〈let x = d in E, t〉oi ⇑rec let x = d in t′

Recomposition of a def-use chain:

〈[ ], x〉chain ⇑rec x
〈C , x′〉chain ⇑rec t 〈E, t〉oi ⇑rec t′

〈let x′ = [ ] d in E[C [x′]], x〉chain ⇑rec let x′ = x d in t′

Fig. 2. Reduction semantics for combinatory graph reduction: recompositions

The corresponding notion of reduction is T :

T = (I ) ∪ (K ) ∪ (S ) ∪ (comb) ∪ (assoc) ∪ (ref )

Reduction strategy: The reduction strategy is left-most outermost (and thus
not optimal [23]): the def-use chains force us to only consider the outermost
combination, and (comb) ensures that this outermost combination is the left-
most one.

Recompositions: Figure 2 displays the recompositions of a reduction context
with a term, and of a def-use chain with a reference:

Definition 1 (inside-out recomposition of contexts). A context E is re-
composed around a term t into a term t′ = E[t] whenever 〈E, t〉io ⇑rec t′ holds.
(See Figure 2 and also Footnote 1 for the notation E[t].)
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Definition 2 (outside-in recomposition of contexts). A context E is re-
composed around a term t into a term t′ = E[t] whenever 〈E, t〉oi ⇑rec t′ holds.
(See Figure 2.)

Outside-in recomposition of contexts is used as an auxiliary judgment in the
recomposition of def-use chains:

Definition 3 (recomposition of def-use chains). A def-use chain C is re-
composed around a reference x into a term t = C [x] whenever 〈C , x〉chain ⇑rec t
holds.6 (See Figure 2.)

Decomposition: Decomposition implements the reduction strategy by searching
for a redex and its reduction context in a term. Figure 3 displays this search as
a transition system:

term-transitions: Given a term, we recursively dive into the bodies of its nested
let expressions until its innermost reference x, which is therefore needed.

cont-transitions: Having found a reference x that is needed, we backtrack in
search of its declaration, incrementally constructing a def-use chain for it.7

If we do not find any redex, the term is in T -normal form.
den-transitions: Having found the declaration of the reference that was needed,

we check whether we have also found a redex and thus a decomposition.
Otherwise, a combinator is not fully applied or a new reference is needed.
We then resume a cont-transition, either on our way to a T -normal form or
extending the current def-use chain for this new reference.

Definition 4 (decomposition). For any t,

〈t, [ ]〉term ↓∗dec

{
〈t〉nf if t ∈ T -nf

〈E, r〉dec otherwise

where r is the left-most outermost redex in t and E is its reduction context.

The transition system implementing decomposition can be seen as a big-step ab-
stract machine [12]. As repeatedly pointed out in the first author’s lecture notes
at AFP 2008 [11], such a big-step abstract machine is often in defunctionalized
form—as is the case here. In the present case, it can be refunctionalized into a
function over source terms which is compositional. Ergo, it is expressible as a
catamorphism over source terms. Further, the parameters of this catamorphism
are total functions. Therefore, the decomposition function is total. It yields ei-
ther the given term if this term is in T -normal form, or its left-most outermost
redex and the corresponding reduction context.

6 As already pointed out in Footnote 1, the notation C [x] stands for a term that
uniquely decomposes into a def-use chain, C , and a reference, x.

7 There is no transition for 〈[ ], (x0, E0, C )〉cont because all references are declared.
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〈let x = d in t, E〉term ↓dec 〈t, let x = d in E〉term
〈x, E〉term ↓dec 〈E, (x, [ ], [ ])〉cont

〈[ ], t〉cont ↓dec 〈t〉nf
〈let x = d in E, t〉cont ↓dec 〈E, let x = d in t〉cont

〈let x0 = d in E, (x0, E0, C )〉cont ↓dec 〈x0, d, E0, C , E〉den
〈let x = d in E, (x0, E0, C )〉cont ↓dec 〈E, (x0, let x = d in E0, C )〉cont

where x 6= x0

〈x1, I, E1, Π
i=0
0 (xi, di, Ei) · C , E〉den ↓dec 〈E, let x1 = I in E1[let x0 = x1 d0 in E0[C [x0]]]〉dec

where 〈C , x0〉chain ⇑rec C [x0]
and 〈E0, C [x0]〉oi ⇑rec E0[C [x0]]

〈x2, K, E2, Π
i=1
0 (xi, di, Ei) · C , E〉den ↓dec 〈E, let x2 = K in E2[let x1 = x2 d1 in

E1[let x0 = x1 d0 in
E0[C [x0]]]]〉dec

where 〈C , x0〉chain ⇑rec C [x0]
and 〈E0, C [x0]〉oi ⇑rec E0[C [x0]]

〈x3, S, E3, Π
i=2
0 (xi, di, Ei) · C , E〉den ↓dec 〈E, let x3 = S in E3[let x2 = x3 d2 in

E2[let x1 = x2 d1 in
E1[let x0 = x1 d0 in

E0[C [x0]]]]]〉dec
where 〈C , x0〉chain ⇑rec C [x0]
and 〈E0, C [x0]〉oi ⇑rec E0[C [x0]]

〈x0, d0, E0, C , E〉den ↓dec 〈E, let x0 = d0 in E0[C [x0]]〉cont
where d0 = I and |C | < 1

or d0 = K and |C | < 2
or d0 = S and |C | < 3

and 〈C , x0〉chain ⇑rec C [x0]
and 〈E0, C [x0]〉oi ⇑rec E0[C [x0]]

〈x0, x1 d0, E0, C , E〉den ↓dec 〈E, (x1, [ ], (x0, d0, E0) · C )〉cont
〈x0, d0 d1, E0, C , E〉den ↓dec 〈E, let x0 = d0 d1 in E0[C [x0]]〉dec

where d0 is not a reference
and 〈C , x0〉chain ⇑rec C [x0]
and 〈E0, C [x0]〉oi ⇑rec E0[C [x0]]

〈x0, let x1 = d1 in t0, E0, C , E〉den ↓dec 〈E, let x0 = (let x1 = d1 in t0) in E0[C [x0]]〉dec
where 〈C , x0〉chain ⇑rec C [x0]
and 〈E0, C [x0]〉oi ⇑rec E0[C [x0]]

〈x0, x1, E0, C , E〉den ↓dec 〈E, let x0 = x1 in E0[C [x0]]〉dec
where 〈C , x0〉chain ⇑rec C [x0]
and 〈E0, C [x0]〉oi ⇑rec E0[C [x0]]

Fig. 3. Reduction semantics for combinatory graph reduction: decomposition

One-step reduction: The function of performing one contraction in a term that
is not in T -normal form proceeds as follows: (1) locating a redex and its context
through a number of decomposition steps according to the reduction strategy,
(2) contracting this redex, and (3) recomposing the resulting contractum into
the context:

Definition 5 (standard one-step reduction). For any t, t 7→T t′′ if

〈t, [ ]〉term ↓∗dec 〈E, r〉dec ∧ (r, t′) ∈ T ∧ 〈E, t′〉io ⇑rec t′′
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One-step reduction is a partial function because the given term may already be
in T -normal form.

Reduction-based evaluation: Reduction-based evaluation is defined as the itera-
tion of the standard one-step reduction function. It thus proceeds by enumerating
the reduction sequence of any given program:

Definition 6 (standard reduction-based evaluation). For any program p,

p 7→∗T t ∧ t ∈ T -nf

Evaluation is a partial function because it may diverge.
Most of the time, decomposition and recomposition(s) are kept implicit in

published reduction semantics. We however observe that what was kept implicit
is then progressively revealed as, e.g., one constructs an abstract machine to
implement evaluation [16]. We believe that it is better to completely spell out
reduction semantics upfront, because one is then in position to systematically
calculate the corresponding abstract machines [11], as illustrated in the next
section for syntactic graph reduction.

2.2 A storeless abstract machine

Reduction-based evaluation, as defined in Section 2.1, is inefficient because of
its repeated decompositions and recompositions that construct each successive
term in a reduction sequence. Refocusing [15] deforests these intermediate terms,
and is defined very simply as continuing decomposition with the contractum
and its reduction context. The reduction semantics of Section 2.1 satisfies the
formal requirements for refocusing [15] and so its reduction-based evaluation
function can be simplified into a reduction-free evaluation function that does not
construct each successive term in reduction sequences. Reflecting the structure of
the decomposition function of Figure 3, the result is an abstract machine whose
‘corridor’ transitions can be compressed into the abstract machine displayed in
Figure 4:

term-transitions: The term-transitions are the same as for decomposition.
cont-transitions: The cont-transitions are the same as for decomposition.
den-transitions: Having found the declaration of the reference that was needed,

we check whether we have also found a redex. If so, we contract it and
continue with a new needed reference. Otherwise, the den-transitions are
the same as for decomposition.

This abstract machine uses the following two compositions of evaluation con-
texts:

Definition 7 (composition of evaluation contexts). Two contexts that were
constructed outside in are composed into an outside-in context as follows:

[ ] ◦oi E = E
(let x = d in E′) ◦oi E = let x = d in (E′ ◦oi E)

This composition function is associative.
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Definition 8 (mixed composition of evaluation contexts). A context that
was constructed inside out is composed with a context that was constructed out-
side in as follows:

[ ] ◦io E = E
(let x = d in E′) ◦io E = E′ ◦io let x = d in E

The resulting context is constructed outside in.

Proposition 1 (full correctness). For any program p,

p 7→∗T t ∧ t ∈ T -nf ⇔ 〈p, [ ]〉term →∗step 〈t〉nf

2.3 Summary and conclusion

Starting from a completely spelled out reduction semantics for combinatory
terms with sharing, we have mechanically derived a storeless abstract machine.
These two semantic artifacts share the same syntactic representations.

3 Preprocessing combinatory terms into term graphs

In Section 2, references are declared on demand in the reduction sequence. In
this section, we factor out all possible such declarations for combinations into a
preprocessing phase.

We start by restating the (comb) and (S ) axioms:

(comb′) let x = d0 d1 in E[C [x]] → let x0 = d0 in
let x1 = d1 in
let x = x0 x1 in E[C [x]]
where d0 is not a reference
and x1 and x2 are fresh

In contrast to the (comb) axiom, the restated axiom (comb′) declares references
for both sides of a combination. Unlike in Section 2, there can thus be references
to denotable terms whose denotation is not needed. In the same spirit, we restate
the (S ) axiom so that it declares references to both sides of any combination in
the contractum:

(S ′) let x3 = S in
E3[let x2 = x3 d2 in

E2[let x1 = x2 d1 in
E1[let x0 = x1 d0 in

E0[C [x0]]]]]

→ let x3 = S in
E3[let x4 = d2 in

let x2 = x3 x4 in
E2[let x5 = d1 in

let x1 = x2 x5 in
E1[let x6 = d0 in

let x7 = x4 x6 in
let x8 = x5 x6 in
let x0 = x7 x8 in
E0[C [x0]]]]]

where x4, x5, x6, x7 and x8 are fresh
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The corresponding notion of reduction is T ′:

T ′ = (I ) ∪ (K ) ∪ (S ′) ∪ (comb′) ∪ (assoc) ∪ (ref )

We split T ′ into two: a compile-time notion of reduction C and a run-time notion
of reduction R:

C = (assoc) ∪ (comb′)

R = (I ) ∪ (K ) ∪ (S ′) ∪ (ref )

Each of C and R contain only left-linear axioms and no critical pairs: they are
orthogonal and thus confluent [21]. Furthermore, C is strongly normalizing.

The C-normal forms are contained within the following sub-grammar of terms:

Denotable Term 3 d ::= I | K | S | xx | x
Term 3 t ::= let x = d in t | x

In this grammar, only combinations of references are admitted and furthermore
let expressions are completely flattened, in a way reminiscent of monadic normal
forms [18,19].

Proposition 2 (Preprocessing). If t�T ′ t′ ∧ t′ ∈ T ′-nf
then ∃t′′ ∈ C-nf . t�C t′′ �R t′.

Proof. Strong normalization of C ensures the existence of t′′. Confluence of T ′
gives t′′ �T ′ t′. R is closed over C-nf. Thus, only R is needed in the reduction
t′′ �R t′.

We observe that a preprocessed term is a syntactic representation of a graph
where every denotable term has been declared with a reference. Indeed it is
straightforward to interpret preprocessed terms as term graphs:

Definition 9 (term graphs [7, Definition 4.2.6]). A term graph is a tuple
(N, lab, succ, r) over a set of function symbols F where

– N is a set of unique node identifiers;
– lab : N → F is a labeling function mapping nodes to function symbols;
– succ : N → Nn is a successor function mapping nodes to an n-tuple of

successor nodes for some natural number n; and
– r ∈ N is the root of the term graph.

Definition 10 (interpreting combinatory terms as term graphs). For
any preprocessed term, its term graph over the function symbols F = {I,K, S,A}
is defined as follows:

– N is the set of declared references in the term.
– lab is defined on the definiens of a reference: for a combinator, it yields

the respective function symbols I, K or S; for a combination, it yields the
application symbol A; and for a reference, it yields the result of applying lab
to this reference, which in effect acts as an alias for a node.8

8 This application is well behaved since terms are acyclic.
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(I ) let x1 = I in E1[let x0 = x1 y0 in E0[C [x0]]] → let x1 = I in E1[let x0 = y0 in E0[C [x0]]]
(K ) let x2 = K in E2[let x1 = x2 y1 in

E1[let x0 = x1 y0 in
E0[C [x0]]]]

→ let x2 = K in E2[let x1 = x2 y1 in
E1[let x0 = y1 in

E0[C [x0]]]]
(S) let x3 = S in

E3[let x2 = x3 y2 in
E2[let x1 = x2 y1 in

E1[let x0 = x1 y0 in
E0[C [x0]]]]]

→ let x3 = S in
E3[let x2 = x3 y2 in

E2[let x1 = x2 y1 in
E1[let x4 = y2 y0 in

let x5 = y1 y0 in
let x0 = x4 x5 in
E0[C [x0]]]]]

where x4 and x5 are fresh
(ref ) let x0 = x1 in E0[C [x0]] → let x0 = x1 in E0[C [x1]]

Fig. 5. Reduction semantics for combinatory graph reduction over preprocessed terms:
axioms

– succ is defined on the definiens of references: for a combination, it yields the
corresponding pair of references, and for everything else, the empty tuple.

– r is the innermost reference of the term.

Using the interpretation of Definition 10, we can translate the contraction rules
over combinatory terms to graph-rewriting rules [7, Section 4.4.4]. The transla-
tion of (I ), (K ) and (S ′) gives us rewriting rules with the side condition that
the redex is rooted, meaning that there is a path from the root of the graph to
the redex, which is the case here and is manifested by its def-use chain. Terms
in our language are therefore a restricted form of term graphs: directed acyclic
graphs with an ordering hierarchy imposed on succ by the scoping of nested let
expressions. (In his PhD thesis [8], Blom refers to this property of term graphs
as ‘horizontal sharing.’)

3.1 A reduction semantics

Here is the full definition of the syntax after preprocessing terms into C-nf:

Program 3 p ::= let x = d in x
Denotable Term 3 d ::= I | K | S | xx | x

Term 3 t ::= let x = d in t | x
Reduction Context 3 E ::= [ ] | let x = d in E

Def-use Chain 3 C ::= [ ] | let x = [ ]x in E[C [x]]

Axioms: Figure 5 displays the axioms. Each of (I ) and (K ) is much as the
corresponding axiom in Section 2, though we have specialized it with respect to
the grammar of preprocessed terms. The (S ) axiom is a further specialization
of the (S ′) axiom. Specifically, since the right-hand side of any combination is
known to be a reference, there is no need to introduce new let expressions to
preserve sharing. As for the (ref ) axiom, it is unchanged.

The notion of reduction on preprocessed terms is G:

G = (I ) ∪ (K ) ∪ (S ) ∪ (ref )

12



Recompositions: The recompositions of contexts and def-use chains are defined
in the same way as in Section 2.

Decomposition: Decomposition is much as in Section 2, though we have special-
ized it with respect to the grammar of preprocessed terms.

One-step reduction: The function of performing one contraction in a term that is
not in G-normal form is defined as (1) locating a redex and its context through a
number of decomposition steps according to the reduction strategy, (2) contract-
ing this redex, and (3) recomposing the resulting contractum into the context:

Definition 11 (standard one-step reduction). For any t,

t 7→G t′′ if


〈t, [ ]〉term ↓∗dec 〈E, r〉dec

(r, t′) ∈ G
〈E, t′〉io ⇑rec t′′

One-step reduction is a partial function because the given term may already be
in G-normal form.

Reduction-based evaluation: Reduction-based evaluation is defined as the itera-
tion of the standard one-step reduction function. It thus proceeds by enumerating
the reduction sequence of any given program:

Definition 12 (standard reduction-based evaluation). For any program
p,

p 7→∗G t ∧ t ∈ G-nf

Evaluation is a partial function because it may diverge.

3.2 A storeless abstract machine

The abstract machine is calculated as in Section 2.2.

3.3 Summary and conclusion

Starting from a completely spelled out reduction semantics for preprocessed
combinatory term graphs, we have derived a storeless abstract machine. As in
Section 2, these two semantic artifacts share the same syntactic representations.

4 Store-based combinatory graph reduction

In this section, we no longer represent graph vertices explicitly as let expressions,
but implicitly as locations in a store:

Global Store 3 σ
Location 3 x, y

13



In the storeless accounts of Sections 2 and 3, let expressions declare references to
denotable terms. In the store-based account presented in this section, a global
store maps locations to storable terms. Given a store σ, a location x and a
storable term s, we write σ[x := s] for the store σ′ such that σ′(x) = s and
σ′(x′) = σ(x′) for x′ 6= x.

The syntax of Section 3 therefore specializes as follows:

Program 3 p ::= (x, σ)
Storable Term 3 s ::= I | K | S | xx | x
Ancestor Stack 3 a ::= [ ] | (x, x) · a

A program now pairs the root of a graph in a store with this store. Denotable
terms have been replaced by storable terms. Terms and reduction contexts have
been replaced by references in the store. Def-use chains have specialized into
what Turner calls ancestor stacks. We write |a| for the height of an ancestor
stack a.

Translating the preprocessed terms of Section 3 to store-based terms is straight-
forward:

Definition 13 (let-expression based to store-based).

Jlet x = d in tKσ = JtKσ[x := JdK′]
JxKσ = (x, σ)

JIK′ = I
JKK′ = K
JSK′ = S

Jx0 x1K′ = Jx0K′ Jx1K′
JxK′ = x

This encoding maps the explicit representation of graph vertices as let expres-
sions to implicit locations in a store.

4.1 A reduction semantics

Axioms: An axiom is of the form (x, σ)→ (x′, σ′) where x and x′ are the left and
right root respectively. For such an axiom, a redex is a pair (x′′, σ′′) together with
a renaming of locations defined by a structure-preserving function on storable
terms, π, such that:

π(x) = x′′ and ∀y ∈ dom(σ) . π(σ(y)) = σ′′(π(y)).

In words, the renaming must map the left root to the root of the redex, and
any location in the store of the axiom must have a corresponding location in the
store of the redex. As before, we write σ[x := s] for a store mapping the location
x to the storable term s.

The axioms are displayed in Figure 6. They assume that there is a path from
the graph root to the redex root. This assumption mirrors the decomposition
conditions in the axioms of Figure 5. Consequently, the reference axiom is split
in two cases: one if the redex root is the graph root, corresponding to a decom-
position into the empty def-use chain, and one if the redex root is not the graph
root, corresponding to a decomposition into a non-empty def-use chain.

The notion of reduction on store-based terms is H:

H = (I ) ∪ (K ) ∪ (S ) ∪ (ref 1) ∪ (ref 2)
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(I ) (x0, σ[x1 := I][x0 :=x1 y0]) → (x0, σ[x1 := I][x0 := y0])
(K ) (x0, σ[x2 :=K][x1 :=x2 y1][x0 :=x1 y0]) → (x0, σ[x2 :=K][x1 :=x2 y1][x0 := y1])
(S) (x0, σ[x3 :=S]

[x2 :=x3 y2]
[x1 :=x2 y1]
[x0 :=x1 y0])

→ (x0, σ[x3 :=S]
[x2 :=x3 y2]
[x1 :=x2 y1]
[x4 := y2 y0]
[x5 := y1 y0]
[x0 :=x4 x5])

where x4 and x5 are fresh
(ref 1) (x0, σ[x0 :=x1]) → (x1, σ[x0 :=x1])

where x0 is the graph root
(ref 2) (x0, σ[x0 :=x1]) → (x1, σ[x0 :=x1][x :=x1 y])

where x is reachable from the graph root
and σ(x) = x0 y for some y

Fig. 6. Reduction semantics for store-based combinatory graph reduction:
axioms

〈[ ], x, σ〉stack ↓dec 〈(x, σ)〉nf
〈(x0, y0) · a, x1, σ〉stack ↓dec 〈a, x0, σ〉stack

〈x1, I, (x0, y0) · a, σ〉sto ↓dec 〈a, (x0, σ)〉dec
〈x2, K, (x1, y1) · (x0, y0) · a, σ〉sto ↓dec 〈a, (x0, σ)〉dec

〈x3, S, (x2, y2) · (x1, y1) · (x0, y0) · a, σ〉sto ↓dec 〈a, (x0, σ)〉dec
〈x0, s, a, σ〉sto ↓dec 〈a, x0, σ〉stack

where s = I and |a| < 1,
or s = K and |a| < 2
or s = S and |a| < 3

〈x0, x1 y0, a, σ〉sto ↓dec 〈x1, σ(x1), (x0, y0) · a, σ〉sto
〈x0, x1, a, σ〉sto ↓dec 〈a, (x0, σ)〉dec

Fig. 7. Reduction semantics for store-based combinatory graph reduction:
decomposition

Recomposition: The recomposition of an ancestor stack with a store-based term
relocates the root of the graph:

〈[ ], x, σ〉stack ⇑rec (x, σ)

〈a, x0, σ〉stack ⇑rec (x′, σ′)

〈(x0, y0) · a, x, σ〉stack ⇑rec (x′, σ′)

Decomposition: Decomposition is much as in Section 2 though we have further
specialized it with respect to store-based graphs. The search previously done at
return time is now done at call time. Starting from the root reference, x, we
recursively search for a redex, incrementally constructing an ancestor stack for
x. If we do not find any redex, the term is in H-normal form. Figure 7 displays
this search as a transition system:
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Definition 14 (decomposition). For any (x, σ),

〈x, σ(x), [ ], σ〉sto ↓∗dec

{
〈(x, σ)〉nf if (x, σ) ∈ H-nf

〈a, (x′, σ′)〉dec otherwise

where (x′, σ′) is the left-most outermost redex in (x, σ) and a is the ancestor
stack from x to x′.

One-step reduction: The function of performing one contraction in a term that is
not in H-normal form is defined as (1) locating a redex and its context through a
number of decomposition steps according to the reduction strategy, (2) contract-
ing this redex, and (3) recomposing the resulting contractum into the context:

Definition 15 (standard one-step reduction). For any (x, σ),

(x, σ) 7→H (x′′′, σ′′′) iff


〈x, σ(x), [ ], σ〉sto ↓∗dec 〈a, (x′, σ′)〉dec

((x′, σ′), (x′′, σ′′)) ∈ H
〈a, x′′, σ′′〉stack ⇑rec (x′′′, σ′′′)

One-step reduction is a partial function because the given term may already be
in H-normal form.

Reduction-based evaluation: Reduction-based evaluation is defined as the itera-
tion of the standard one-step reduction function. It thus proceeds by enumerating
the reduction sequence of any given program:

Definition 16 (standard reduction-based evaluation). For any program
(x, σ),

(x, σ) 7→∗H (x′, σ′) ∧ (x′, σ′) ∈ H-nf

Evaluation is a partial function because it may diverge.

4.2 A store-based abstract machine

The abstract machine is calculated as in Section 2.2. We display it in Figure 8. Its
architecture is that of Turner’s SK-reduction machine [30]: the left-ancestor stack
is incrementally constructed at each combination; upon reaching a combinator,
its arguments are found on top of the ancestor stack and a graph transforma-
tion takes place to rearrange them. In particular, our handling of stored loca-
tions coincides with Turner’s indirection nodes. The only differences are that
our machine accepts the partial application of combinators and that Turner’s
combinators are unboxed, which is an optimization.

Proposition 3 (full correctness). For any program (x, σ),

(x, σ) 7→∗H (x′, σ′) ∧ (x′, σ′) ∈ H-nf ⇔ 〈x, σ(x), [ ], σ〉sto →∗step 〈(x′, σ′)〉nf
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〈[ ], x, σ〉stack →step 〈(x, σ)〉nf
〈(x0, y0) · a, x1, σ〉stack →step 〈a, x0, σ〉stack

〈x1, I, (x0, y0) · a, σ〉sto →step 〈x0, y0, a, σ[x0 := y0]〉sto
〈x2, K, (x1, y1) · (x0, y0) · a, σ〉sto →step 〈x0, y1, a, σ[x0 := y1]〉sto

〈x3, S, (x2, y2) · (x1, y1) · (x0, y0) · a, σ〉sto →step 〈y2, σ′(y2), (x4, y0) · (x0, y5) · a, σ′〉sto
where σ′ = σ[x4 := y2 y0]

[x5 := y1 y0]
[x0 :=x4 x5]

and x4 and x5 are fresh
〈x0, s, a, σ〉sto →step 〈a, x0, σ〉stack

where s = I and |a| < 1,
or s = K and |a| < 2
or s = S and |a| < 3

〈x0, x1 y0, a, σ〉sto →step 〈x1, σ(x1), (x0, y0) · a, σ〉sto
〈x0, x1, [ ], σ〉sto →step 〈x1, σ(x1), [ ], σ〉sto

〈x0, x1, (x, y) · a, σ〉sto →step 〈x1, σ′(x1), (x, y) · a, σ′〉sto
where σ′ = σ[x :=x1 y]

Fig. 8. Store-based abstract machine for combinatory graph reduction

4.3 Summary and conclusion

Starting from a completely spelled out reduction semantics for combinatory term
graphs in a store, we have derived a store-based abstract machine. The structure
of this store-based abstract machine coincides with that of Turner’s SK-reduction
machine.

5 Related work

It has long been noticed that combinators make it possible to do without vari-
ables. For example, in the 1960’s, Robinson outlined how this could be done to
implement logics [29]. However, it took Turner to realize in the 1970’s that com-
binatory graph reduction could be not only efficiently implementable, but also
provided an efficient implementation for lazy functional languages [30]. Turner’s
work ignited a culture of implementation techniques in the 1980’s [26], whose
goal in retrospect can be characterized as designing efficient big-step graph re-
ducers.

Due to the increased interest in graph reduction, Barendregt et al. developed
term graphs and term graph rewriting [7]. Their work has since been used to
model languages with sharing and to reason about program transformations in
the presence of sharing [2,17,20,22,27]. Later work by Ariola and Klop provides
an equational theory for term graph rewriting with cycles [5], a topic further
developed by Blom in his PhD thesis [8] and by Nakata and Hagesawa since [25].

Over the 2000’s, the first author and his students have investigated off-the-
shelf program-transformation techniques for inter-deriving semantic artifacts [1,
14,31]. The present work is an outgrowth of this investigation.
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6 Conclusion and future work

Methodologically, mathematicians who wrote about their art (Godfrey H. Hardy,
John E. Littlewood, Paul Halmos, Jacques Hadamard, George Pólya, Alexan-
dre Gothendriek, and Donald E. Knuth for example) clearly describe how their
research is typically structured in two stages: (1) an exploratory stage where
they boldly move forward, discovering right and left, and (2) a descriptive stage
where they retrace their steps and revisit their foray, verify it, structure it, and
put it into narrative shape. As far as abstract machines are concerned, tradition
has it to seek new semantic artifacts, which is characteristic of the first stage.
Our work stems from this tradition, though by now it subscribes to the second
stage as we field-test our derivational tools.

The present article reports our field test of combinatory graph reduction. Our
main result is that representing def-use chains using reduction contexts and let
expressions, which, in retrospect, is at the heart of Ariola et al.’s syntactic theory
of the call-by-need λ-calculus, also makes it possible to account for combinatory
graph reduction. We have stated in complete detail two reduction semantics and
have derived two storeless abstract machines. Interpreting denotable entities
as storable ones in a global store, we have rediscovered David Turner’s graph-
reduction machine.

Currently, we are adding the Y combinator and inter-deriving natural seman-
tics that correspond to the abstract machines. We are also adding literals and
strict arithmetic and logic functions, as well as garbage-collection rules such as
the following one:

let x = d in t → t if x does not occur in t

At this point of time, we are wondering which kind of garbage collector is fostered
by the nested let expressions of the syntactic theories and also the extent to which
its references are akin to Curry’s apparent variables [9].

Acknowledgments: Thanks are due to Mar̀ıa Alpuente for her generous invita-
tion to present this material at LOPSTR 2010. We are also grateful to Kenichi
Asai, Mayer Goldberg, Steffen Daniel Jensen, Julia Lawall, and three anonymous
reviewers for their comments on an earlier version of this article.

The present study of a computational reality is a tribute to the first author’s
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