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Abstract
To celebrate the 20th anniversary of PEPM, we are inviting you to
a walk in the semantic park and to inter-derive reduction-based and
reduction-free negational normalization functions.

Categories and Subject Descriptors D.1.1 [Software]: Program-
ming Techniques—applicative (functional) programming; D.3.2
[Programming Languages]: Language Classifications—applicative
(functional) languages; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—Speci-
fication techniques; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic—Lambda calculus and related sys-
tems.

General Terms Algorithms, Languages, Theory

Keywords reduction-based normalization, reduction-free normal-
ization, negational normal forms, De Morgan laws, reduction se-
mantics, abstract machines, reduction contexts, evaluation con-
texts, continuations, continuation-passing style (CPS), CPS trans-
formation, defunctionalization, refunctionalization, refocusing

1. Introduction
The De Morgan laws provide conversion rules between Boolean
formulas, where negations float up or down an abstract syntax tree:

¬(¬t)↔ t
¬(t1 ∧ t2)↔ (¬t1) ∨ (¬t2)
¬(t1 ∨ t2)↔ (¬t1) ∧ (¬t2)

where t ::= x | ¬t | t ∧ t | t ∨ t. These conversion rules can be
oriented into reduction rules. For example, the following reduction
rules make negations float down the abstract syntax tree of a given
formula:

¬(¬t)→ t
¬(t1 ∧ t2)→ (¬t1) ∨ (¬t2)
¬(t1 ∨ t2)→ (¬t1) ∧ (¬t2)

Any Boolean formula can be reduced into a negational normal
form, where only variables are negated:

tnf ::= x | ¬x | tnf ∧ tnf | tnf ∨ tnf

[Copyright notice will appear here once ’preprint’ option is removed.]

Negational normalization can be equivalently viewed as a small-
step process, where the De Morgan reduction rules are repeatedly
applied until a normal form is obtained, and as a big-step process,
where a given Boolean formula is recursively traversed in one
fell swoop. On the occasion it is also specified with an abstract
machine, which can itself be equally viewed as a small-step process
and as a big-step one [6].

The goal of this article is to inter-derive these normalization
processes using the program transformations used in Reynolds’s
functional correspondence between evaluators and big-step abstract
machines [1, 16] and in the syntactic correspondence between cal-
culi and small-step abstract machines [2], to which we add a new
prelude. In the rest of this introduction, we specify the abstract syn-
tax of Boolean formulas and of negational normal forms. We then
successively consider two reduction strategies: leftmost outermost
(Section 2) and leftmost innermost (Section 3). For emphasis, the
presentations of Sections 2 and 3 are deliberately parallel, so that
the reader can easily identify what is generic to the methodology
and what is specific to each example. Throughout, we use pure ML
as a functional meta-language. We have tried to make this article
self-contained, but in case of doubt, the reader should consult the
first author’s lecture notes at the Sixth International School on Ad-
vanced Functional Programming [3].

Terms: A Boolean formula is either a variable, a negated formula,
a conjunction of two formulas, or a disjunction of two formulas. We
implement Boolean formulas with the following ML data type:

datatype term = VAR of ide
| NEG of term
| CONJ of term × term
| DISJ of term × term

The fold functional associated to this data type abstracts its recur-
sive descent by parameterizing what to do in each case:

fun term_foldr (var , neg , conj , disj) t
= let fun visit (VAR x)

= var x
| visit (NEG t)

= neg (visit t)
| visit (CONJ (t1 , t2))

= conj (visit t1, visit t2)
| visit (DISJ (t1 , t2))

= disj (visit t1, visit t2)
in visit t
end

Normal forms: A normal form is a formula where only variables
are negated. Since ML does not support subtyping, we implement
normal forms with the following specialized data type:

datatype term_nf = POSVAR_nf of ide
| NEGVAR_nf of ide
| CONJ_nf of term_nf × term_nf
| DISJ_nf of term_nf × term_nf
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The fold functional associated to this data type abstracts its recur-
sive descent by parameterizing what to do in each case:

fun term_nf_foldr (posvar , negvar , conj , disj) t
= let fun visit (POSVAR_nf x)

= posvar x
| visit (NEGVAR_nf x)

= negvar x
| visit (CONJ_nf (t1_nf , t2_nf))

= conj (visit t1_nf , visit t2_nf)
| visit (DISJ_nf (t1_nf , t2_nf))

= disj (visit t1_nf , visit t2_nf)
in visit t
end

For example, a normal form is dualized by recursively mapping
positive occurrences of variables to negative ones, negative occur-
rences of variables to positive ones, conjunctions to disjunctions,
and disjunctions to conjunctions:

val dualize = term_nf_foldr (NEGVAR_nf ,
POSVAR_nf ,
DISJ_nf ,
CONJ_nf)

A normal form is embedded into a Boolean formula by mapping
every specialized constructor into the corresponding original con-
structor(s):

val embed = term_nf_foldr (VAR ,
fn x ⇒ NEG (VAR x),
CONJ ,
DISJ)

2. Leftmost outermost negational normalization
In this section, we go from a leftmost-outermost reduction strat-
egy to the corresponding leftmost-outermost evaluation strategy.
We first implement the reduction strategy (Section 2.1) as a pre-
lude to implementing the corresponding reduction semantics (Sec-
tion 2.2). We then turn to the syntactic correspondence between
reduction semantics and abstract machines (Section 2.3) and to the
functional correspondence between abstract machines and normal-
ization functions (Section 2.4).

2.1 Prelude to a reduction semantics
The reduction strategy induces a notion of value and of potential
redex (i.e., of a term that is an actual redex or that is stuck);
we are then in position to state a compositional search function
that implements the reduction strategy and maps a given term
either to the corresponding value, if it is in normal form, or to
a potential redex (Section 2.1.1). From this search function we
derive a decomposition function mapping a given term either to
the corresponding value, if it is in normal form, or to a potential
redex and its reduction context (Section 2.1.2). As a corollary we
can then state the associated recomposition function that maps a
reduction context and a contractum to the corresponding reduct
(Section 2.1.3).

2.1.1 The reduction strategy
The reduction strategy consists in locating the leftmost-outermost
negation of a term which is not a variable. A value therefore is a
term where only variables are negated, i.e., a normal form:

type value = term_nf

A potential redex is the negation of a term that is not a variable:

datatype potential_redex = PR_NEG of term
| PR_CONJ of term × term
| PR_DISJ of term × term

The following compositional search function implements the re-
duction strategy. It searches a potential redex depth-first and from
left to right:

datatype found = VAL of value
| POTRED of potential_redex

(* term → found *)
fun search_term_neg (VAR x)

= VAL (NEGVAR_nf x)
| search_term_neg (NEG t)

= POTRED (PR_NEG t)
| search_term_neg (CONJ (t1, t2))

= POTRED (PR_CONJ (t1 , t2))
| search_term_neg (DISJ (t1, t2))

= POTRED (PR_DISJ (t1 , t2))

(* term → found *)
fun search_term (VAR x)

= VAL (POSVAR_nf x)
| search_term (NEG t)

= search_term_neg t
| search_term (CONJ (t1, t2))

= (case search_term t1
of (VAL v1)
⇒ (case search_term t2

of (VAL v2)
⇒ VAL (CONJ_nf (v1 , v2))

| (POTRED pr)
⇒ POTRED pr)

| (POTRED pr)
⇒ POTRED pr)

| search_term (DISJ (t1, t2))
= (case search_term t1

of (VAL v1)
⇒ (case search_term t2

of (VAL v2)
⇒ VAL (DISJ_nf (v1 , v2))

| (POTRED pr)
⇒ POTRED pr)

| (POTRED pr)
⇒ POTRED pr)

(* term → found *)
fun search t

= search_term t

When a negation is encountered, the auxiliary function search_

term_neg is called to decide whether this negation is a value or a
potential redex.

2.1.2 From searching to decomposing
Let us transform the search function of Section 2.1.1 into a decom-
position function for the reduction semantics of Section 2.2. The
only difference between searching and decomposing is that given
a non-value term, searching yields a potential redex whereas de-
composing yields a potential redex and its reduction context. This
reduction context is the defunctionalized continuation of the search
function, and we construct it as such, by (1) CPS-transforming the
search function (and simplifying it one bit) and (2) defunctionaliz-
ing its continuation.

CPS transformation: The search function is CPS-transformed by
naming its intermediate results, sequentializing their computation,
and introducing an extra functional argument, the continuation, that
maps an intermediate result to a final answer:

(* term × (found → α) → α *)
fun search_term_neg (VAR x, k)

= k (VAL (NEGVAR_nf x))
| search_term_neg (NEG t, k)

= k (POTRED (PR_NEG t))
| search_term_neg (CONJ (t1, t2), k)

= k (POTRED (PR_CONJ (t1, t2)))
| search_term_neg (DISJ (t1, t2), k)

= k (POTRED (PR_DISJ (t1, t2)))
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(* term × (found → α) → α *)
fun search_term (VAR x, k)

= k (VAL (POSVAR_nf x))
| search_term (NEG t, k)

= search_term_neg (t, k)
| search_term (CONJ (t1, t2), k)

= search_term (t1,
fn (VAL v1)
⇒ search_term (t2,

fn (VAL v2)
⇒ k (VAL (CONJ_nf (v1, v2)))

| (POTRED pr)
⇒ k (POTRED pr))

| (POTRED pr)
⇒ k (POTRED pr))

| search_term (DISJ (t1, t2), k)
= search_term (t1,

fn (VAL v1)
⇒ search_term (t2,

fn (VAL v2)
⇒ k (VAL (DISJ_nf (v1, v2)))

| (POTRED pr)
⇒ k (POTRED pr))

| (POTRED pr)
⇒ k (POTRED pr))

(* term → found *)
fun search t

= search_term (t, fn f ⇒ f)

Simplifying the CPS-transformed search: The search is com-
pleted as soon as a potential redex is found. It can thus be simplified
by only applying the continuation when a value is found:

(* term × (value → found) → found *)
fun search_term_neg (VAR x, k)

= k (NEGVAR_nf x)
| search_term_neg (NEG t, k)

= POTRED (PR_NEG t)
| search_term_neg (CONJ (t1, t2), k)

= POTRED (PR_CONJ (t1 , t2))
| search_term_neg (DISJ (t1, t2), k)

= POTRED (PR_DISJ (t1 , t2))

(* term × (value → found) → found *)
fun search_term (VAR x, k)

= k (POSVAR_nf x)
| search_term (NEG t, k)

= search_term_neg (t, k)
| search_term (CONJ (t1, t2), k)

= search_term (t1, fn v1 ⇒
search_term (t2, fn v2 ⇒

k (CONJ_nf (v1 , v2))))
| search_term (DISJ (t1, t2), k)

= search_term (t1, fn v1 ⇒
search_term (t2, fn v2 ⇒

k (DISJ_nf (v1 , v2))))

(* term → found *)
fun search t

= search_term (t, fn v ⇒ VAL v)

Potential redexes are now returned directly and the VAL constructor
is relegated to the initial continuation.

Defunctionalization: To defunctionalize the continuation, we
first enumerate the inhabitants of its function space. These in-
habitants arise from the initial continuation in the definition of
search and in the 4 intermediate continuations in the definition
of search_term. We therefore represent the continuation as a data
type with 5 constructors, together with a function apply_cont dis-
patching upon these 5 summands:

datatype cont = C0
| C1 of value × cont
| C2 of cont × term
| C3 of value × cont
| C4 of cont × term

(* cont → value → found *)
fun apply_cont C0

= (fn v ⇒ VAL v)
| apply_cont (C1 (v1, k))

= (fn v2 ⇒ apply_cont k (CONJ_nf (v1, v2)))
| apply_cont (C2 (k, t2))

= (fn v1 ⇒ search_term (t2, C1 (v1 , k)))
| apply_cont (C3 (v1, k))

= (fn v2 ⇒ apply_cont k (DISJ_nf (v1, v2)))
| apply_cont (C4 (k, t2))

= (fn v1 ⇒ search_term (t2, C3 (v1 , k)))

(* term × cont → found *)
and search_term_neg (VAR x, k)

= apply_cont k (NEGVAR_nf x)
| search_term_neg (NEG t, k)

= POTRED (PR_NEG t)
| search_term_neg (CONJ (t1, t2), k)

= POTRED (PR_CONJ (t1 , t2))
| search_term_neg (DISJ (t1 , t2), k)

= POTRED (PR_DISJ (t1 , t2))

(* term × cont → found *)
and search_term (VAR x, k)

= apply_cont k (POSVAR_nf x)
| search_term (NEG t, k)

= search_term_neg (t, k)
| search_term (CONJ (t1, t2), k)

= search_term (t1, C2 (k, t2))
| search_term (DISJ (t1, t2), k)

= search_term (t1, C4 (k, t2))

(* term → found *)
fun search t

= search_term (t, C0)

This data type of defunctionalized continuations is that of reduction
contexts.

We have defined apply_cont in curried form to emphasize that
it maps each summand to a continuation. In the following, we
consider its uncurried definition.

Decomposition: We are now in position to extend the search
function to not only return a potential redex (if one exists) but also
its reduction context. The result is the decomposition function of a
reduction semantics, where value_or_decomposition, decompose,
decompose_term, decompose_term_neg, and decompose_cont are
the respective clones of found, search, search_term, search_

term_neg, and apply_cont:
datatype value_or_decomposition

= VAL of value
| DEC of potential_redex × cont

(* cont × value → value_or_decomposition *)
fun decompose_cont (C0 , v)

= VAL v
| decompose_cont (C1 (v1, k), v2)

= decompose_cont (k, CONJ_nf (v1, v2))
| decompose_cont (C2 (k, t2), v1)

= decompose_term (t2, C1 (v1, k))
| decompose_cont (C3 (v1, k), v2)

= decompose_cont (k, DISJ_nf (v1, v2))
| decompose_cont (C4 (k, t2), v1)

= decompose_term (t2, C3 (v1, k))

(* term × cont → value_or_decomposition *)
and decompose_term_neg (VAR x, k)

= decompose_cont (k, NEGVAR_nf x)
| decompose_term_neg (NEG t, k)

= DEC (PR_NEG t, k)
| decompose_term_neg (CONJ (t1 , t2), k)

= DEC (PR_CONJ (t1, t2), k)
| decompose_term_neg (DISJ (t1, t2), k)

= DEC (PR_DISJ (t1, t2), k)

(* term × cont → value_or_decomposition *)
and decompose_term (VAR x, k)

= decompose_cont (k, POSVAR_nf x)
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| decompose_term (NEG t, k)
= decompose_term_neg (t, k)

| decompose_term (CONJ (t1 , t2), k)
= decompose_term (t1, C2 (k, t2))

| decompose_term (DISJ (t1 , t2), k)
= decompose_term (t1, C4 (k, t2))

(* term → value_or_decomposition *)
fun decompose t

= decompose_term (t, C0)

2.1.3 Recomposing
A reduction context is recomposed around a term with a left fold
over this context:

(* cont × term → term *)
fun recompose (C0 , t)

= t
| recompose (C1 (v1, k), t2)

= recompose (k, CONJ (embed v1, t2))
| recompose (C2 (k, t2), t1)

= recompose (k, CONJ (t1 , t2))
| recompose (C3 (v1, k), t2)

= recompose (k, DISJ (embed v1, t2))
| recompose (C4 (k, t2), t1)

= recompose (k, DISJ (t1 , t2))

2.2 A reduction semantics
We are now fully equipped to implement a reduction semantics for
negational normalization.

2.2.1 Notion of contraction
The contraction rules implement the De Morgan laws:

datatype contractum_or_error = CONTRACTUM of term
| ERROR of string

(* potential_redex → contractum_or_error *)
fun contract (PR_NEG t)

= CONTRACTUM t
| contract (PR_CONJ (t1, t2))

= CONTRACTUM (DISJ (NEG t1, NEG t2))
| contract (PR_DISJ (t1, t2))

= CONTRACTUM (CONJ (NEG t1, NEG t2))

In the present case, all potential redexes are actual ones, i.e., no
terms are stuck.

2.2.2 One-step reduction
Given a non-value term, a one-step reduction function (1) decom-
poses this non-value term into a potential redex and a reduction
context, (2) contracts the potential redex if it is an actual one, and
(3) recomposes the reduction context with the contractum. If the
potential redex is not an actual one, reduction is stuck. Given a
value term, reduction is also stuck:

datatype reduct_or_stuck = REDUCT of term
| STUCK of string

(* term → reduct_or_stuck *)
fun reduce t

= (case decompose t
of (VAL v)
⇒ STUCK "irreducible term"

| (DEC (pr , k))
⇒ (case contract pr

of (CONTRACTUM t’)
⇒ REDUCT (recompose (k, t’))

| (ERROR s)
⇒ STUCK s))

This one-step reduction function is the hallmark of a reduction
semantics [10].

2.2.3 Reduction-based normalization
A reduction-based normalization function is one that iterates the
one-step reduction function until it yields a value or becomes stuck.
If it yields a value, this value is the result of evaluation, and if it
becomes stuck, evaluation goes wrong:

datatype result_or_wrong = RESULT of value
| WRONG of string

The following definition uses decompose to distinguish between
value and non-value terms:

(* value_or_decomposition → result_or_wrong *)
fun iterate (VAL v)

= RESULT v
| iterate (DEC (pr, k))

= (case contract pr
of (CONTRACTUM t’)
⇒ iterate

(decompose
(recompose (k, t’)))

| (ERROR s)
⇒ WRONG s)

(* term → result_or_wrong *)
fun normalize t

= iterate (decompose t)

2.3 From reduction-based to reduction-free normalization
In this section, we transform the reduction-based normalization
function of Section 2.2.3 into a family of reduction-free normal-
ization functions, i.e., functions that do not enumerate the reduc-
tion sequence and where no intermediate reduct is ever constructed.
We first refocus the reduction-based normalization function to de-
forest the intermediate reducts [9], and we obtain a small-step
abstract machine implementing the iteration of the refocus func-
tion (Section 2.3.1). After inlining the contraction function (Sec-
tion 2.3.2), we transform this small-step abstract machine into a
big-step one [6] (Section 2.3.3). This machine exhibits a number of
corridor transitions, and we compress them (Section 2.3.4). We also
opportunistically specialize its contexts (Section 2.3.5). The result-
ing abstract machine is in defunctionalized form [8], and we refunc-
tionalize it [7] (Section 2.4.1). The result is in continuation-passing
style and we re-express it in direct style [4] (Section 2.4.2). The re-
sulting direct-style function is a traditional conversion function for
Boolean formulas; in particular, it is compositional. We express it
with one recursive descent using term_foldr (Section 2.4.3).

Modus operandi: In each of the following subsections, we de-
rive successive versions of the normalization function, indexing its
components with the number of the subsection.

2.3.1 Refocusing
The normalization function of Section 2.2.3 is reduction-based be-
cause it constructs every intermediate term in the reduction se-
quence. In its definition, decompose is always applied to the result
of recompose after the first decomposition. In fact, a vacuous initial
call to recompose ensures that in all cases, decompose is applied to
the result of recompose:

fun normalize t
= iterate (decompose (recompose (C0, t)))

We can factor out these composite calls in a function, refocus0,
that maps a contractum and its reduction context to the next poten-
tial redex and the next reduction context, if such a pair exists, in the
reduction sequence:

(* term × cont → value_or_decomposition *)
fun refocus0 (t, k)

= decompose (recompose (k, t))
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(* value_or_decomposition → result_or_wrong *)
fun iterate0 (VAL v)

= RESULT v
| iterate0 (DEC (pr, k))

= (case contract pr
of (CONTRACTUM t’)
⇒ iterate0 (refocus0 (t’, k))

| (ERROR s)
⇒ WRONG s)

(* term → result_or_wrong *)
fun normalize0 t

= iterate0 (refocus0 (t, C0))

Refocusing, extensionally: The refocus function goes from a re-
dex site to the next redex site, if there is one.

Refocusing, intensionally: As investigated by Nielsen and the first
author [9], the refocus function can be deforested to avoid con-
structing any intermediate reduct. Such a deforestation makes
the normalization function reduction-free. The deforested ver-
sion of refocus is optimally defined as continuing the de-
composition of the contractum in the current context, i.e., as
decompose_term:

(* term × cont → value_or_decomposition *)
fun refocus1 (t, k)

= decompose_term (t, k)

The refocused evaluation function therefore reads as follows:

(* value_or_decomposition → result_or_wrong *)
fun iterate1 (VAL v)

= RESULT v
| iterate1 (DEC (pr, k))

= (case contract pr
of (CONTRACTUM t’)
⇒ iterate1 (refocus1 (t’, k))

| (ERROR s)
⇒ WRONG s)

(* term → result_or_wrong *)
fun normalize1 t

= iterate1 (refocus1 (t, C0))

This refocused normalization function is reduction-free because it
is no longer based on a (one-step) reduction function and it no
longer enumerates the successive reducts in the reduction sequence.

In the rest of this section, we mechanically transform this
reduction-free normalization function into an abstract machine.

2.3.2 Inlining the contraction function
We first unfold the call to contract in the definition of iterate1,
and name the resulting function iterate2. Reasoning by inversion,
there are three potential redexes and therefore the DEC clause in
the definition of iterate1 is replaced by three DEC clauses in the
definition of iterate2:

(* term × cont → value_or_decomposition *)
fun refocus2 (t, k)

= decompose_term (t, k)

(* value_or_decomposition → result_or_wrong *)
fun iterate2 (VAL v)

= RESULT v
| iterate2 (DEC (PR_NEG t, k))

= iterate2
(refocus2 (t, k))

| iterate2 (DEC (PR_CONJ (t1, t2), k))
= iterate2

(refocus2 (DISJ (NEG t1, NEG t2), k))
| iterate2 (DEC (PR_DISJ (t1, t2), k))

= iterate2
(refocus2 (CONJ (NEG t1, NEG t2), k))

(* term → result_or_wrong *)
fun normalize2 t

= iterate2 (refocus2 (t, C0))

2.3.3 Lightweight fusion: from small-step abstract machine
to big-step abstract machine

The refocused normalization function is a small-step abstract ma-
chine in the sense that refocus2 (i.e., decompose_term, decompose_
term_neg and decompose_cont) acts as an inner transition function
and iterate2 as an outer transition function. The outer transition
function (also known as a ‘driver loop’ and as a ‘trampoline’ [11])
keeps activating the inner transition function until a value is ob-
tained. Using Ohori and Sasano’s ‘lightweight fusion by fixed-
point promotion’ [6, 12], we fuse iterate2 and refocus2 (i.e.,
decompose_term, decompose_term_neg and decompose_cont) so
that the resulting function iterate3 is directly applied to the result
of decompose_term, decompose_term_neg and decompose_cont.
The result is a big-step abstract machine [15] consisting of four
(mutually tail-recursive) state-transition functions:

• normalize3_term is the composition of iterate2 and decompo-
se_term and a clone of decompose_term;

• normalize3_term_neg is the composition of iterate2 and de-
compose_term_neg and a clone of decompose_term_neg;

• normalize3_cont is the composition of iterate2 and decom-
pose_cont that directly calls iterate3 over a value or a decom-
position instead of returning it to iterate2 as decompose_cont

did;
• iterate3 is a clone of iterate2 that calls the fused function
normalize3_term.

(* cont × value → result_or_wrong *)
fun normalize3_cont (C0, v)

= iterate3 (VAL v)
| normalize3_cont (C1 (v1, k), v2)

= normalize3_cont (k, CONJ_nf (v1, v2))
| normalize3_cont (C2 (k, t2), v1)

= normalize3_term (t2, C1 (v1 , k))
| normalize3_cont (C3 (v1, k), v2)

= normalize3_cont (k, DISJ_nf (v1, v2))
| normalize3_cont (C4 (k, t2), v1)

= normalize3_term (t2, C3 (v1 , k))

(* term × cont → result_or_wrong *)
and normalize3_term_neg (VAR x, k)

= normalize3_cont (k, NEGVAR_nf x)
| normalize3_term_neg (NEG t, k)

= iterate3 (DEC (PR_NEG t, k))
| normalize3_term_neg (CONJ (t1 , t2), k)

= iterate3 (DEC (PR_CONJ (t1, t2), k))
| normalize3_term_neg (DISJ (t1 , t2), k)

= iterate3 (DEC (PR_DISJ (t1, t2), k))

(* term × cont → result_or_wrong *)
and normalize3_term (VAR x, k)

= normalize3_cont (k, POSVAR_nf x)
| normalize3_term (NEG t, k)

= normalize3_term_neg (t, k)
| normalize3_term (CONJ (t1 , t2), k)

= normalize3_term (t1, C2 (k, t2))
| normalize3_term (DISJ (t1 , t2), k)

= normalize3_term (t1, C4 (k, t2))

(* value_or_decomposition → result_or_wrong *)
and iterate3 (VAL v)

= RESULT v
| iterate3 (DEC (PR_NEG t, k))

= normalize3_term (t, k)
| iterate3 (DEC (PR_CONJ (t1, t2), k))

= normalize3_term (DISJ (NEG t1, NEG t2), k)
| iterate3 (DEC (PR_DISJ (t1, t2), k))

= normalize3_term (CONJ (NEG t1, NEG t2), k)
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(* term → result_or_wrong *)
fun normalize3 t

= normalize3_term (t, C0)

2.3.4 Hereditary transition compression
In the abstract machine of Section 2.3.3, many of the transitions
are ‘corridor’ ones in that they yield configurations for which there
is a unique further transition. Let us hereditarily compress these
transitions. To this end, we cut-and-paste the transition functions
above, renaming their indices from 3 to 4. We consider each of
their clauses in turn:

Clause normalize4_cont (C0, v):

normalize4_cont (C0, v)
= (* by inlining normalize4_cont *)
iterate4 (VAL v)
= (* by inlining iterate4 *)
RESULT v

Clause normalize4_term_neg (NEG t, k):

normalize4_term_neg (NEG t, k)
= (* by inlining normalize4_term_neg *)
iterate4 (DEC (PR_NEG t, k))
= (* by inlining iterate4 *)
normalize3_term (t, k)

Clause normalize4_term_neg (CONJ (t1, t2), k):

normalize4_term_neg (CONJ (t1, t2), k)
= (* by inlining normalize4_term_neg *)
iterate4 (DEC (PR_CONJ (t1, t2), k))
= (* by inlining iterate4 *)
normalize4_term (DISJ (NEG t1 , NEG t2), k)
= (* by inlining normalize4_term *)
normalize4_term (NEG t1, C4 (k, NEG t2))
= (* by inlining normalize4_term *)
normalize4_term_neg (t1 , C4 (k, NEG t2))

Clause normalize4_term_neg (DISJ (t1, t2), k):

normalize4_term_neg (DISJ (t1, t2), k)
= (* by inlining normalize4_term_neg *)
iterate4 (DEC (PR_DISJ (t1, t2), k))
= (* by inlining iterate4 *)
normalize4_term (CONJ (NEG t1 , NEG t2), k)
= (* by inlining normalize4_term *)
normalize4_term (NEG t1, C2 (k, NEG t2))
= (* by inlining normalize4_term *)
normalize4_term_neg (t1 , C2 (k, NEG t2))

As a corollary of the compressions, the definition of iterate3 is
now unused and can be omitted. The resulting abstract machine
reads as follows:

(* cont × value → result_or_wrong *)
fun normalize4_cont (C0, v)

= RESULT v
| normalize4_cont (C1 (v1, k), v2)

= normalize4_cont (k, CONJ_nf (v1, v2))
| normalize4_cont (C2 (k, t2), v1)

= normalize4_term (t2, C1 (v1 , k))
| normalize4_cont (C3 (v1, k), v2)

= normalize4_cont (k, DISJ_nf (v1, v2))
| normalize4_cont (C4 (k, t2), v1)

= normalize4_term (t2, C3 (v1 , k))

(* term × cont → result_or_wrong *)
and normalize4_term_neg (VAR x, k)

= normalize4_cont (k, NEGVAR_nf x)
| normalize4_term_neg (NEG t, k)

= normalize4_term (t, k)
| normalize4_term_neg (CONJ (t1 , t2), k)

= normalize4_term_neg (t1, C4 (k, NEG t2))

| normalize4_term_neg (DISJ (t1 , t2), k)
= normalize4_term_neg (t1, C2 (k, NEG t2))

(* term × cont → result_or_wrong *)
and normalize4_term (VAR x, k)

= normalize4_cont (k, POSVAR_nf x)
| normalize4_term (NEG t, k)

= normalize4_term_neg (t, k)
| normalize4_term (CONJ (t1 , t2), k)

= normalize4_term (t1, C2 (k, t2))
| normalize4_term (DISJ (t1 , t2), k)

= normalize4_term (t1, C4 (k, t2))

(* term → result_or_wrong *)
fun normalize4 t

= normalize4_term (t, C0)

2.3.5 Context specialization
To symmetrize the definitions of normalize4_term and normalize4_

term_neg, we introduce two specialized contexts for C2 and C4, and
we specialize normalize4_cont to directly call normalize5_term
_neg for the new contexts C2NEG and C4NEG:

datatype cont = C0
| C1 of value × cont
| C2 of cont × term
| C2NEG of cont × term
| C3 of value × cont
| C4 of cont × term
| C4NEG of cont × term

(* cont × value → result_or_wrong *)
fun normalize5_cont (C0, v)

= RESULT v
| normalize5_cont (C1 (v1, k), v2)

= normalize5_cont (k, CONJ_nf (v1, v2))
| normalize5_cont (C2 (k, t2), v1)

= normalize5_term (t2, C1 (v1 , k))
| normalize5_cont (C2NEG (k, t2), v1)

= normalize5_term_neg (t2, C1 (v1, k))
| normalize5_cont (C3 (v1, k), v2)

= normalize5_cont (k, DISJ_nf (v1, v2))
| normalize5_cont (C4 (k, t2), v1)

= normalize5_term (t2, C3 (v1 , k))
| normalize5_cont (C4NEG (k, t2), v1)

= normalize5_term_neg (t2, C3 (v1, k))

(* term × cont → result_or_wrong *)
and normalize5_term_neg (VAR x, k)

= normalize5_cont (k, NEGVAR_nf x)
| normalize5_term_neg (NEG t, k)

= normalize5_term (t, k)
| normalize5_term_neg (CONJ (t1 , t2), k)

= normalize5_term_neg (t1, C4NEG (k, t2))
| normalize5_term_neg (DISJ (t1 , t2), k)

= normalize5_term_neg (t1, C2NEG (k, t2))

(* term × cont → result_or_wrong *)
and normalize5_term (VAR x, k)

= normalize5_cont (k, POSVAR_nf x)
| normalize5_term (NEG t, k)

= normalize5_term_neg (t, k)
| normalize5_term (CONJ (t1 , t2), k)

= normalize5_term (t1, C2 (k, t2))
| normalize5_term (DISJ (t1 , t2), k)

= normalize5_term (t1, C4 (k, t2))

(* term → result_or_wrong *)
fun normalize5 t

= normalize5_term (t, C0)

2.4 From abstract machines to normalization functions
In this section, we transform the abstract machine of Section 2.3.5
into two compositional normalization functions, one in continuation-
passing style (Section 2.4.1) and one in direct style (Section 2.4.2).
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2.4.1 Refunctionalization
Like many other big-step abstract machines [1, 3], the abstract ma-
chine of Section 2.3.5 is in defunctionalized form [8]: the reduction
contexts, together with normalize5_cont, are the first-order coun-
terpart of a function. This function is introduced with the data-type
constructors C0, etc., and eliminated with calls to the dispatching
function normalize5_cont. The higher-order counterpart of this ab-
stract machine reads as follows:

(* term × (value → α) → α *)
fun normalize6_term_neg (VAR x, k)

= k (NEGVAR_nf x)
| normalize6_term_neg (NEG t, k)

= normalize6_term (t, k)
| normalize6_term_neg (CONJ (t1 , t2), k)

= normalize6_term_neg (t1, fn v1 ⇒
normalize6_term_neg (t2, fn v2 ⇒

k (DISJ_nf (v1 , v2))))
| normalize6_term_neg (DISJ (t1 , t2), k)

= normalize6_term_neg (t1, fn v1 ⇒
normalize6_term_neg (t2, fn v2 ⇒

k (CONJ_nf (v1 , v2))))

(* term × (value → α) → α *)
and normalize6_term (VAR x, k)

= k (POSVAR_nf x)
| normalize6_term (NEG t, k)

= normalize6_term_neg (t, k)
| normalize6_term (CONJ (t1 , t2), k)

= normalize6_term (t1, fn v1 ⇒
normalize6_term (t2, fn v2 ⇒

k (CONJ_nf (v1 , v2))))
| normalize6_term (DISJ (t1 , t2), k)

= normalize6_term (t1, fn v1 ⇒
normalize6_term (t2, fn v2 ⇒

k (DISJ_nf (v1 , v2))))

(* term → result_or_wrong *)
fun normalize6 t

= normalize6_term (t, fn v ⇒ RESULT v)

This normalization function is compositional over source terms.

2.4.2 Back to direct style
The refunctionalized definition of Section 2.4.1 is in continuation-
passing style since it has a functional accumulator and all of its
calls are tail calls [4]. Its direct-style counterpart reads as follows:

(* term → value *)
fun normalize7_term_neg (VAR x)

= NEGVAR_nf x
| normalize7_term_neg (NEG t)

= normalize7_term t
| normalize7_term_neg (CONJ (t1 , t2))

= DISJ_nf (normalize7_term_neg t1,
normalize7_term_neg t2)

| normalize7_term_neg (DISJ (t1 , t2))
= CONJ_nf (normalize7_term_neg t1,

normalize7_term_neg t2)

(* term → value *)
and normalize7_term (VAR x)

= POSVAR_nf x
| normalize7_term (NEG t)

= normalize7_term_neg t
| normalize7_term (CONJ (t1, t2))

= CONJ_nf (normalize7_term t1,
normalize7_term t2)

| normalize7_term (DISJ (t1, t2))
= DISJ_nf (normalize7_term t1,

normalize7_term t2)

(* term → result_or_wrong *)
fun normalize7 t

= RESULT (normalize7_term t)

This normalization function is compositional over source terms.

2.4.3 Catamorphic normalizers
The compositional normalizer of Section 2.4.2 features two mutu-
ally recursive functions from terms to values. These two functions
can be expressed as one, using the following type isomorphism:

(A→ B)× (A→ B) ' A→ B2

Representationally, this isomorphism can be exploited in two ways:
by representing B2 as 2 → B and by representing B2 as B × B.
Let us review each of these representations.

Representing B2 as 2 → B: We first need a two-element type
to account for the “polarity” of the current sub-term, i.e., whether
the number of negations between the root of the given term and the
current sub-term is even (in which case the polarity is positive) or
it is odd (in which case the polarity is negative):

datatype polarity = P (* P like Plus *)
| M (* M like Minus *)

We are now in position to express the normalizer with one recursive
descent over the given term, threading the current polarity in an
inherited fashion, and returning a term in normal form:

(* term → (polarity → value) *)
fun normalize8_term (VAR x)

= (fn P ⇒ POSVAR_nf x
| M ⇒ NEGVAR_nf x)

| normalize8_term (NEG t)
= let val c = normalize8_term t

in fn P ⇒ c M
| M ⇒ c P

end
| normalize8_term (CONJ (t1 , t2))

= let val c1 = normalize8_term t1
val c2 = normalize8_term t2

in fn P ⇒ CONJ_nf (c1 P, c2 P)
| M ⇒ DISJ_nf (c1 M, c2 M)

end
| normalize8_term (DISJ (t1 , t2))

= let val c1 = normalize8_term t1
val c2 = normalize8_term t2

in fn P ⇒ DISJ_nf (c1 P, c2 P)
| M ⇒ CONJ_nf (c1 M, c2 M)

end

(* term → result_or_wrong *)
fun normalize8 t

= RESULT (normalize8_term t P)

Initially, the given term has a positive polarity.
To make it manifest that this normalizer is (1) compositional

and (2) singly recursive, let us express it as a catamorphism, i.e., as
an instance of term_foldr:

(* term → (polarity → value) *)
val normalize9_term

= term_foldr
(fn x ⇒

(fn P ⇒ POSVAR_nf x
| M ⇒ NEGVAR_nf x),

fn c ⇒
(fn P ⇒ c M

| M ⇒ c P),
fn (c1, c2) ⇒

(fn P ⇒ CONJ_nf (c1 P, c2 P)
| M ⇒ DISJ_nf (c1 M, c2 M)),

fn (c1, c2) ⇒
(fn P ⇒ DISJ_nf (c1 P, c2 P)

| M ⇒ CONJ_nf (c1 M, c2 M)))

(* term → result_or_wrong *)
fun normalize9 t

= RESULT (normalize9_term t P)

Representing B2 as B × B: We use a pair holding a term in
normal form and its dual. This pair puts us in position to express
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the normalizer with one recursive descent over the given term,
returning a pair of terms in normal form in a synthesized fashion:

(* term → value × value *)
fun normalize10_term (VAR x)

= (POSVAR_nf x, NEGVAR_nf x)
| normalize10_term (NEG t)

= let val (tp , tm) = normalize10_term t
in (tm, tp)
end

| normalize10_term (CONJ (t1, t2))
= let val (t1p , t1m) = normalize10_term t1

val (t2p , t2m) = normalize10_term t2
in (CONJ_nf (t1p , t2p), DISJ_nf (t1m , t2m))
end

| normalize10_term (DISJ (t1, t2))
= let val (t1p , t1m) = normalize10_term t1

val (t2p , t2m) = normalize10_term t2
in (DISJ_nf (t1p , t2p), CONJ_nf (t1m , t2m))
end

(* term → result_or_wrong *)
fun normalize10 t

= let val (tp , tm) = normalize10_term t
in RESULT tp
end

The final result is the positive component of the resulting pair.
To make it manifest that this normalization function is (1) com-

positional and (2) singly recursive, let us express it as a catamor-
phism, i.e., as an instance of term_foldr:

(* term → value × value *)
val normalize11_term

= term_foldr
(fn x ⇒

(POSVAR_nf x, NEGVAR_nf x),
fn (tp, tm) ⇒
(tm , tp),

fn ((t1p , t1m), (t2p , t2m)) ⇒
(CONJ_nf (t1p , t2p), DISJ_nf (t1m , t2m)),

fn ((t1p , t1m), (t2p , t2m)) ⇒
(DISJ_nf (t1p , t2p), CONJ_nf (t1m , t2m)))

(* term → result_or_wrong *)
fun normalize11 t

= let val (tp , tm) = normalize11_term t
in RESULT tp
end

2.5 Summary and conclusion
We have refocused the reduction-based normalization function of
Section 2.2.3 into a small-step abstract machine, and we have
exhibited a family of corresponding reduction-free normalization
functions that all are inter-derivable.

3. Leftmost innermost negational normalization
In this section, we go from a leftmost-innermost reduction strat-
egy to the corresponding leftmost-innermost evaluation strategy.
We first implement the reduction strategy (Section 3.1) as a pre-
lude to implementing the corresponding reduction semantics (Sec-
tion 3.2). We then turn to the syntactic correspondence between
reduction semantics and abstract machines (Section 3.3) and to the
functional correspondence between abstract machines and normal-
ization functions (Section 3.4).

3.1 Prelude to a reduction semantics
The reduction strategy induces a notion of value and of potential
redex (i.e., of a term that is an actual redex or that is stuck);
we are then in position to state a compositional search function
that implements the reduction strategy and maps a given term
either to the corresponding value, if it is in normal form, or to
a potential redex (Section 3.1.1). From this search function we

derive a decomposition function mapping a given term either to
the corresponding value, if it is in normal form, or to a potential
redex and its reduction context (Section 3.1.2). As a corollary we
can then state the associated recomposition function that maps a
reduction context and a contractum to the corresponding reduct
(Section 3.1.3).

3.1.1 The reduction strategy
The reduction strategy consists in locating the leftmost-innermost
negation of a term which is not a variable. A value therefore is a
term where only variables are negated, i.e., a normal form:

type value = term_nf

A potential redex is the negation of a term in negational normal
form which is not a variable:

datatype potential_redex = PR_NEG of value
| PR_CONJ of value × value
| PR_DISJ of value × value

The following compositional search function implements the re-
duction strategy: it searches a potential redex depth-first and from
left to right:

datatype found = VAL of value
| POTRED of potential_redex

(* term → found *)
fun search_term_neg t

= (case search_term t
of (VAL v)
⇒ (case v

of (POSVAR_nf x)
⇒ VAL (NEGVAR_nf x)

| (NEGVAR_nf x)
⇒ POTRED (PR_NEG (POSVAR_nf x))

| (CONJ_nf (v1 , v2))
⇒ POTRED (PR_CONJ (v1, v2))

| (DISJ_nf (v1 , v2))
⇒ POTRED (PR_DISJ (v1, v2)))

| (POTRED pr)
⇒ POTRED pr)

(* term → found *)
and search_term (VAR x)

= VAL (POSVAR_nf x)
| search_term (NEG t)

= search_term_neg t
| search_term (CONJ (t1, t2))

= (case search_term t1
of (VAL v1)
⇒ (case search_term t2

of (VAL v2)
⇒ VAL (CONJ_nf (v1 , v2))

| (POTRED pr)
⇒ POTRED pr)

| (POTRED pr)
⇒ POTRED pr)

| search_term (DISJ (t1, t2))
= (case search_term t1

of (VAL v1)
⇒ (case search_term t2

of (VAL v2)
⇒ VAL (DISJ_nf (v1 , v2))

| (POTRED pr)
⇒ POTRED pr)

| (POTRED pr)
⇒ POTRED pr)

(* term → found *)
fun search t

= search_term t

When a negation is encountered, the auxiliary function search_

term_neg is called to decide whether this negation is a value or a
potential redex.
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3.1.2 From searching to decomposing
As in Section 2.1.2, we transform the search function of Sec-
tion 3.1.1 into a decomposition function for the reduction seman-
tics of Section 3.2. We do so by (1) CPS-transforming the search
function, (2) defunctionalizing its continuation,

datatype cont = C0
| C1 of value × cont
| C2 of cont × term
| C3 of value × cont
| C4 of cont × term
| C5 of cont

and (3) returning a potential redex (if one exists) and its reduction
context:

datatype value_or_decomposition
= VAL of value
| DEC of potential_redex × cont

(* cont × value → value_or_decomposition *)
fun decompose_cont (C0, v)

= VAL v
| decompose_cont (C1 (v1, k), v2)

= decompose_cont (k, CONJ_nf (v1, v2))
| decompose_cont (C2 (k, t2), v1)

= decompose_term (t2, C1 (v1, k))
| decompose_cont (C3 (v1, k), v2)

= decompose_cont (k, DISJ_nf (v1, v2))
| decompose_cont (C4 (k, t2), v1)

= decompose_term (t2, C3 (v1, k))
| decompose_cont (C5 k, v)

= (case v
of (POSVAR_nf x)
⇒ decompose_cont (k, NEGVAR_nf x)

| (NEGVAR_nf x)
⇒ DEC (PR_NEG (POSVAR_nf x), k)

| (CONJ_nf (v1 , v2))
⇒ DEC (PR_CONJ (v1 , v2), k)

| (DISJ_nf (v1 , v2))
⇒ DEC (PR_DISJ (v1 , v2), k))

(* term × cont → value_or_decomposition *)
and decompose_term_neg (t, k)

= decompose_term (t, C5 k)

(* term × cont → value_or_decomposition *)
and decompose_term (VAR x, k)

= decompose_cont (k, POSVAR_nf x)
| decompose_term (NEG t, k)

= decompose_term_neg (t, k)
| decompose_term (CONJ (t1 , t2), k)

= decompose_term (t1, C2 (k, t2))
| decompose_term (DISJ (t1 , t2), k)

= decompose_term (t1, C4 (k, t2))

(* term → value_or_decomposition *)
fun decompose t

= decompose_term (t, C0)

3.1.3 Recomposing
Recomposing a reduction context around a term is simply done
with a left fold over the reduction context:

(* cont × term → term *)
fun recompose (C0 , t)

= t
| recompose (C1 (v1, k), t2)

= recompose (k, CONJ (embed v1, t2))
| recompose (C2 (k, t2), t1)

= recompose (k, CONJ (t1 , t2))
| recompose (C3 (v1, k), t2)

= recompose (k, DISJ (embed v1, t2))
| recompose (C4 (k, t2), t1)

= recompose (k, DISJ (t1 , t2))
| recompose (C5 k, t)

= recompose (k, NEG t)

3.2 A reduction semantics
We are now fully equipped to implement a reduction semantics for
negational normalization.

3.2.1 Notion of contraction
The contraction rules implement the De Morgan laws:

datatype contractum_or_error = CONTRACTUM of term
| ERROR of string

(* potential_redex → contractum_or_error *)
fun contract (PR_NEG v)

= CONTRACTUM (embed v)
| contract (PR_CONJ (v1, v2))

= CONTRACTUM (DISJ (NEG (embed v1),
NEG (embed v2)))

| contract (PR_DISJ (v1, v2))
= CONTRACTUM (CONJ (NEG (embed v1),

NEG (embed v2)))

In the present case, all potential redexes are actual ones, i.e., no
terms are stuck.

3.2.2 One-step reduction
Given a non-value term, a one-step reduction function (1) decom-
poses this non-value term into a potential redex and a reduction
context, (2) contracts the potential redex if it is an actual one, and
(3) recomposes the reduction context with the contractum. If the
potential redex is not an actual one, reduction is stuck. Given a
value term, reduction is also stuck:

datatype reduct_or_stuck = REDUCT of term
| STUCK of string

(* term → reduct_or_stuck *)
fun reduce t

= (case decompose t
of (VAL v)
⇒ STUCK "irreducible term"

| (DEC (pr , k))
⇒ (case contract pr

of (CONTRACTUM t’)
⇒ REDUCT (recompose (k, t’))

| (ERROR s)
⇒ STUCK s))

This one-step reduction function is the hallmark of a reduction
semantics [10].

3.2.3 Reduction-based normalization
A reduction-based normalization function is one that iterates the
one-step reduction function until it yields a value or becomes stuck.
If it yields a value, this value is the result of evaluation, and if it
becomes stuck, evaluation goes wrong:

datatype result_or_wrong = RESULT of value
| WRONG of string

The following definition uses decompose to distinguish between
value and non-value terms:

(* value_or_decomposition → result_or_wrong *)
fun iterate (VAL v)

= RESULT v
| iterate (DEC (pr, k))

= (case contract pr
of (CONTRACTUM t’)
⇒ iterate

(decompose
(recompose (k, t’)))

| (ERROR s)
⇒ WRONG s)

(* term → result_or_wrong *)
fun normalize t

= iterate (decompose t)
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3.3 From reduction-based to reduction-free normalization
In this section, we transform the reduction-based normalization
function of Section 3.2.3 into a family of reduction-free normaliza-
tion functions, i.e., functions that do not enumerate the reduction
sequence and where no intermediate reduct is ever constructed. We
first refocus the reduction-based normalization function [9] to de-
forest the intermediate terms, and we obtain a small-step abstract
machine implementing the iteration of the refocus function (Sec-
tion 3.3.1). After inlining the contraction function (Section 3.3.2),
we transform this small-step abstract machine into a big-step
one [6] (Section 3.3.3). This machine exhibits a number of corridor
transitions, and we compress them (Section 3.3.4). The resulting
abstract machine is in defunctionalized form [8], and we refunc-
tionalize it [7] (Section 3.4.1). The result is in continuation-passing
style and we re-express it in direct style [4] (Section 3.4.2). The
resulting direct-style function is a traditional conversion function
for Boolean formulas; in particular, it is compositional. We express
it with one recursive descent using term_foldr (Section 3.4.3).

Modus operandi: In each of the following subsections, we de-
rive successive versions of the normalization function, indexing its
components with the number of the subsection.

3.3.1 Refocusing
As in Section 2.3.1, we isolate the recomposition of a reduction
context with a contractum and its subsequent decomposition in
one refocus function. In this refocus function, we short-cut the
construction of every reduct in the reduction sequence, turning
normalization from being reduction-based to being reduction-free.

3.3.2 Inlining the contraction function
As in Section 2.3.2, we inline contract in the definition of
iterate1. The result is a small-step abstract machine.

3.3.3 Lightweight fusion: from small-step abstract machine
to big-step abstract machine

As in Section 2.3.3, we fuse the outer and inner transition functions
of the small-step abstract machine of Section 3.3.2. The result is a
big-step abstract machine.

3.3.4 Hereditary transition compression
As in Section 2.3.4, many of the transitions of the abstract machine
of Section 2.3.3 are ‘corridor’ ones. We compress them hereditar-
ily, and we also exploit the property that decomposing the term
representation of a value in a context is the same as continuing the
decomposition of this value in this context.

3.3.5 Context specialization
As in Section 2.3.5, for symmetry, we introduce two specialized
contexts for C2 and C4, and we specialize normalize4_cont to
directly call normalize5_cont_neg for the new contexts C2NEG and
C4NEG:

datatype cont = C0
| C1 of value × cont
| C2 of cont × term
| C2NEG of cont × value
| C3 of value × cont
| C4 of cont × term
| C4NEG of cont × value
| C5 of cont

(* cont × value → result_or_wrong *)
fun normalize5_cont (C0, v)

= RESULT v
| normalize5_cont (C1 (v1, k), v2)

= normalize5_cont (k, CONJ_nf (v1, v2))

| normalize5_cont (C2 (k, t2), v1)
= normalize5_term (t2, C1 (v1 , k))

| normalize5_cont (C2NEG (k, v2), v1)
= normalize5_cont_neg (C1 (v1, k), v2)

| normalize5_cont (C3 (v1, k), v2)
= normalize5_cont (k, DISJ_nf (v1, v2))

| normalize5_cont (C4 (k, t2), v1)
= normalize5_term (t2, C3 (v1 , k))

| normalize5_cont (C4NEG (k, v2), v1)
= normalize5_cont_neg (C3 (v1, k), v2)

| normalize5_cont (C5 k, v)
= normalize5_cont_neg (k, v)

(* cont × value → result_or_wrong *)
and normalize5_cont_neg (k, POSVAR_nf x)

= normalize5_cont (k, NEGVAR_nf x)
| normalize5_cont_neg (k, NEGVAR_nf x)

= normalize5_cont (k, POSVAR_nf x)
| normalize5_cont_neg (k, CONJ_nf (v1, v2))

= normalize5_cont_neg (C4NEG (k, v2), v1)
| normalize5_cont_neg (k, DISJ_nf (v1, v2))

= normalize5_cont_neg (C2NEG (k, v2), v1)

(* term × cont → result_or_wrong *)
and normalize5_term (VAR x, k)

= normalize5_cont (k, POSVAR_nf x)
| normalize5_term (NEG t, k)

= normalize5_term (t, C5 k)
| normalize5_term (CONJ (t1, t2), k)

= normalize5_term (t1, C2 (k, t2))
| normalize5_term (DISJ (t1, t2), k)

= normalize5_term (t1, C4 (k, t2))

(* term → result_or_wrong *)
fun normalize5 t

= normalize5_term (t, C0)

3.4 From abstract machines to normalization functions
In this section, we transform the abstract machine of Section 3.3.5
into two compositional normalization functions, one in continuation-
passing style (Section 3.4.1) and one in direct style (Section 3.4.2).

3.4.1 Refunctionalization
Like many other big-step abstract machines [1, 3], the abstract ma-
chine of Section 3.3.4 is in defunctionalized form [8]: the reduc-
tion contexts, together with normalize4_cont, are the first-order
counterpart of a function. We refunctionalize this big-step abstract
machine into a higher-order normalization function. As in Sec-
tion 2.4.1, this normalization function is compositional over source
terms.

3.4.2 Back to direct style
The refunctionalized definition of Section 3.4.1 is in continuation-
passing style since it has a functional accumulator and all of its
calls are tail calls [4]. Its direct-style counterpart reads as follows:

(* value → value *)
fun normalize7_cont_neg (POSVAR_nf x)

= NEGVAR_nf x
| normalize7_cont_neg (NEGVAR_nf x)

= POSVAR_nf x
| normalize7_cont_neg (CONJ_nf (v1, v2))

= DISJ_nf (normalize7_cont_neg v1,
normalize7_cont_neg v2)

| normalize7_cont_neg (DISJ_nf (v1, v2))
= CONJ_nf (normalize7_cont_neg v1,

normalize7_cont_neg v2)

(* term → value *)
and normalize7_term (VAR x)

= POSVAR_nf x
| normalize7_term (NEG t)

= normalize7_cont_neg (normalize7_term t)

| normalize7_term (CONJ (t1, t2))
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= CONJ_nf (normalize7_term t1,
normalize7_term t2)

| normalize7_term (DISJ (t1 , t2))
= DISJ_nf (normalize7_term t1,

normalize7_term t2)

(* term → result_or_wrong *)
fun normalize7 t

= RESULT (normalize7_term t)

This normalization function is compositional over source terms,
and uses an auxiliary function which is compositional over normal
forms.

3.4.3 Catamorphic normalizer
To make it manifest that the normalizer of Section 3.4.2 is (1) com-
positional and (2) singly recursive, let us express it as a catamor-
phism, i.e., as an instance of term_foldr. By the same token, since
the auxiliary function is also compositional and singly recursive,
we also express it as an instance of term_nf_foldr:

(* value → value *)
val normalize8_cont_neg = term_nf_foldr (NEGVAR_nf ,

POSVAR_nf ,
DISJ_nf ,
CONJ_nf)

(* term → value *)
val normalize8_term = term_foldr (POSVAR_nf ,

normalize8_cont_neg ,
CONJ_nf ,
DISJ_nf)

(* term → result_or_wrong *)
fun normalize8 t

= RESULT (normalize8_term t)

NB: In effect, normalize8_cont_neg dualizes normal forms. This
dualization captures the essence of the innermost normalization
strategy.

3.5 Summary and conclusion
We have refocused the reduction-based normalization function of
Section 3.2.3 into a small-step abstract machine, and we have
exhibited a family of corresponding reduction-free normalization
functions that all are inter-derivable.

4. Conclusion and perspectives
The inter-derivations illustrated here witness a striking unity of
computation across reduction semantics, abstract machines, and
normalization functions: they all truly define the same elephant.
The structural coincidence between reduction contexts and evalua-
tion contexts as defunctionalized continuations, in particular, plays
a key rôle to connect reduction strategies and evaluation strategies,
a connection that was first established by Plotkin [14]. As for Ohori
and Sasano’s lightweight fusion [12], it provides the linchpin be-
tween the functional representations of small-step and big-step op-
erational semantics [6]. Overall, the inter-derivations illustrate the
conceptual value of semantics-based program manipulation, as pro-
moted over the past two decades in PEPM.
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