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Abstract. It is a time-honored fashion to implement a domain-specific
language (DSL) by translation to a general-purpose language. Such an
implementation is more portable, but an unidiomatic translation jeopar-
dizes performance because, in practice, language implementations favor
the common cases. This tension arises especially when the domain calls
for complex control structures. We illustrate this tension by revisiting
Landin’s original correspondence between Algol and Church’s lambda-
notation.

We translate domain-specific programs with lexically scoped jumps to
JavaScript. Our translation produces the same block structure and bind-
ing structure as in the source program, à la Abdali. The target code uses
a control operator in direct style, à la Landin. In fact, the control op-
erator used is almost Landin’s J—hence our title. Our translation thus
complements a continuation-passing translation à la Steele. These two
extreme translations require JavaScript implementations to cater either
for first-class continuations, as Rhino does, or for proper tail recursion.
Less extreme translations should emit more idiomatic control-flow in-
structions such as for, break, and throw.

The present experiment leads us to conclude that translations should
preserve not just the data structures and the block structure of a source
program, but also its control structure. We thus identify a new class
of use cases for control structures in JavaScript, namely the idiomatic
translation of control structures from DSLs.

1 Introduction

It has long been routine to define a programming language by writing an inter-
preter in or a compiler towards a pre-existing language [27, 28, 32, 39–41]. This
tradition began with John McCarthy [34], who argued that it is not a circu-
lar argument but a valid pedagogical device to use a pre-existing language as a



notation for expressing computation. McCarthy drew an analogy between trans-
lations from one programming language to another and Tarski’s efforts to define
one mathematical logic in terms of another, “which have proved so successful
and fruitful” [34, page 7] even though they still draw criticism today [19].

Translations between programming languages have also been used to reason
about expressiveness. For example, Böhm and Jacopini used a compiling argu-
ment to show that flowcharts and expression languages with recursion have the
same expressive power [7], and Fischer invented the CPS transformation to show
the equivalence between the deletion strategy and the retention strategy to im-
plement activation records [16]. Finally, this style of formal specification is also
useful for building interpreters and compilers in practice. Indeed, it has given
rise to industrial-strength software development [6].

The translation approach is alive and well today, whether the defined (source)
language is considered to be domain-specific or general-purpose, and whether the
defining (target) language is a variant of the lambda calculus, C, or some other
language. This stream of successes is especially remarkable given that differences
between the defined and defining languages often force the translation to be quite
ingenious, albeit not entirely perspicuous.

Pervasive ingenuity: Some translations impose global changes on programs.
For example, when the defined language features a side effect that the defin-
ing language does not support, a definitional interpreter must encode the
effect throughout the translation using, e.g., state-passing or continuation-
passing style [41]. These styles have since been crisply factored out into
computational monads [38, 49].

Homomorphic ingenuity: Some translations manage to relate structural el-
ements between source and target programs. For example, McCarthy trans-
lated flowcharts to mutually recursive equations by mapping each program
point to a recursive equation and each variable to a parameter in a re-
cursive equation [33]. These equations were tail-recursive, a property that
Mazurkiewicz then used for proving properties about flowcharts [31]. Landin
translated Algol programs to applicative expressions by mapping block struc-
ture to subexpression structure, assignments to state effects, and jumps to
control effects [27]. Working homomorphically with a smaller defining lan-
guage, namely the lambda calculus, Abdali mapped local functions into
global, lambda-lifted recursive equations in a storeless fashion [1, 3], but
invented continuation-passing style en passant to implement jumps [2].

Seemingly no ingenuity: Even when the translation turns out to be just an
identity function, careful design may be required. For example, it is desirable
for a partial evaluator to be Jones optimal, which means that specializing a
self-interpreter to a program yields the same program modulo renaming [21].
Achieving Jones optimality requires much of the partial evaluator (e.g., it
must resolve scoping references statically), but also of the interpreter: for
one thing, the interpreter must be in direct style; indeed, specializing a
continuation-passing self-interpreter with a Jones-optimal partial evaluator
yields programs in continuation-passing style. To take another example, even
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though Pascal can be regarded as a subset of Scheme and hence easily trans-
lated to Scheme by (essentially) the identity function, such a translation calls
for a Scheme compiler, such as Orbit [25], that is designed so that Pascal-
like programs (i.e., programs with only downwards funargs1 and downwards
contargs) would be compiled as efficiently as by a Pascal compiler [26].

Shoehorning: Not all properties of the defined language are naturally sup-
ported by the defining language and its run-time system. Perhaps the best-
known example is proper tail-recursion and its implementation by trampolin-
ing [4, 18,37,43,47]. A close second is first-class continuations [30,36,44].

For humans and machines to work with a translation more easily, it is our belief
that homomorphic ingenuity and seemingly no ingenuity are preferable over
pervasive ingenuity and shoehorning. In short, we believe that a translation
should take advantage of the expressive power of the defining language in an
idiomatic way, if only for implementations of the defining language to execute
target programs more efficiently. As shown by the examples above, this goal of
idiomaticity often calls for the defined and defining languages to be carefully
designed and reconciled. In other words, the principle of idiomaticity guides
not just language implementation but also language design, especially today as
the proverbial 700 DSLs blossom on new platforms such as browsers running
JavaScript.

This article establishes an idiomatic translation between a specific and illus-
trative pair of languages.

– Our defined language is an Algol-like block-structured language with lexi-
cally scoped jumps. It is illustrative not just because most DSLs have block
structure and lexical scope, but also because many DSLs feature complex
control constructs motivated by their domains such as pattern matching
and logical inference.

– Our defining language is JavaScript with first-class continuation objects, as
implemented in Rhino [10]. It is illustrative not just because many DSLs
are implemented by translation to JavaScript, but also because it lets us
exhibit an extremely uniform and frugal translation among more complex
alternatives that use a greater variety of control-flow instructions.

Taking advantage of the close correspondence between Rhino’s continuation ob-
jects and Landin’s J operator [14], we thus revive Landin’s original correspon-
dence between Algol programs and applicative expressions [27,28].

1 ‘Funarg’ is an abbreviation for ‘functional argument’ and by analogy, ‘contarg’ stands
for ‘continuation argument’. They refer to the ability of passing functions as argu-
ments (downwards funargs) and returning functions as results (upwards funargs).
The ‘downward’ and ‘upward’ orientation stems from implementing function calls
with a current control stack: downwards is toward what has been pushed (and is still
there) and upwards is toward what has been popped (and thus may be gone [16]).
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2 Continuation objects in JavaScript

This section introduces continuation objects in the JavaScript implementation
Rhino, compares them to Landin’s J operator, and explains how we use them to
express jumps in a block-structured language.

In Rhino, a continuation object can be created by evaluating the expression
new Continuation(). The resulting object represents the continuation of the call
to the function that evaluated this expression. That is, invoking a continuation
object (as if it were a function) returns from the function that created it. For
example, the following program only prints 2.

function foo () {

var JI = new Continuation();

JI(2);

print(1);

}

print(foo());

The continuation is undelimited and remains valid throughout the rest of the
program’s execution. For example, the following program prints 1 followed by
an unbounded series of 2’s.

var JI;

function foo () {

JI = new Continuation();

return 1;

}

print(foo());

JI(2);

2.1 Landin’s translation of jumps using J

We name the captured continuations above JI because creating a continuation
object in Rhino is equivalent to invoking Landin’s J operator on the identity
function [14]. The J operator is the first control operator to have graced expres-
sion-oriented programming languages. Landin invented it specifically to translate
Algol jumps to applicative expressions in direct style [27, 29]. If JavaScript fea-
tured the J operator, then Landin would have translated the loop

i := 1000000;

loop: i := i - 1;

if i > 0 then goto loop;

to the following JavaScript program.

var i;

var loop = J(function () {

i = i - 1;

if (i > 0) loop();

});

i = 1000000;

loop();
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The application of J above creates a function loop that, when invoked, evaluates
the function body i = i - 1; if (i > 0) loop(); with the continuation of the
call to the program. In other words, loop denotes a “state appender” [8] and
the invocation loop() jumps into the function body in such a fashion that the
function body directly returns to the caller of the translated program. We thus
express a jump to loop as loop(). This program contains two jumps to loop, an
implicit fall-through and an explicit goto, so the JavaScript code above contains
two occurrences of loop().

The expression new Continuation() in Rhino is equivalent to the expression
J(function (x) { return x; }) in JavaScript with the J operator. Conversely,
Landin and Thielecke [48] noted that J can be expressed in terms of JI as

J = (λc. λf. λx. c(fx)) JI.

Following Landin’s translation strategy, then, one might define

function compose (c,f) { return function (x) { c(f(x)); } }

in JavaScript and then translate the loop above as follows.

var i;

var loop = compose(new Continuation(), function () {

i = i - 1;

if (i > 0) loop();

});

i = 1000000;

loop();

(Because we translate each label to a function that takes no argument, the two
occurrences of x in the definition of compose can be omitted.) This translation,
like Landin’s, is attractive in that it idiomatically preserves the block and binding
structure of the source program: the main program block translates to the main
program block, a sequence of commands translates to a sequence of commands,
and the variable i and the label loop translate to the variables i and loop.

Unfortunately, although this last translation runs in Rhino, it overflows the
stack. The reason is that 1000000 calls to c pile up on the stack and are not
discarded until the function body returns for the first time. Although we can
express J in terms of JI, it is unclear how to do so without this space leak.

2.2 Our translation of jumps using JI

In order to translate jumps while preserving the stack-space usage behavior of
programs, we modify Landin’s translation slightly: every captured continuation
shall accept a thunk and invoke it immediately [15]. In other words, every func-
tion call shall expect a thunk to be returned and invoke it immediately.

Because we cannot change the continuation with which Rhino invokes the
main program, this modification requires that we wrap up the main program
in a function main, which returns a thunk that should be invoked immediately.
Below is our final translation of the loop, which completes without overflowing
the stack in Rhino.
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var main = function () {

var JI = new Continuation();

var i;

var loop = function () { JI(function () {

i = i - 1;

if (i > 0) loop();

});};

return function () {

i = 1000000;

loop();

};

};

main()();

This use of thunks is reminiscent of trampolining, but our technique using
JI does not require the caller of a function to invoke thunks repeatedly until
a final result is reached. Rather, the continuation of main() accepts a thunk
and invokes it exactly once. If another thunk needs to be invoked, such as
function () { i = i - 1; if (i > 0) loop(); } in this example, the same con-
tinuation needs to be invoked again. In other words, the function main in our
target program returns exactly once more than the number of times a jump
occurs in the source program.

2.3 Other uses of J

Outside of its inventor and his student [8], J was first used by Rod Burstall to
traverse a search tree in direct style and breadth first, using a queue of first-class
continuations [9]. We have re-expressed Burstall’s breadth-first tree traversal in
Rhino. With its queue of first-class continuations, this program falls out of the
range of our translator from pidgin Algol to JavaScript.

3 Source and target languages

The key property of our direct-style translation is that it is homomorphic and
thus preserves idioms: declarations translate to declarations, blocks to blocks,
commands to commands, function calls to function calls, and so forth. Since
the translation is homomorphic, we dispense with it altogether in this presen-
tation and simply consider the restricted language obtained as the image of the
translation. We thus present the grammar of JavaScript programs in the image
of the translation. Figure 1 displays the productions of special interest to our
translation, accounting for the essential features of Algol we wish translated to
JavaScript. For completeness we include the full grammar in Appendix A. This
full grammar accounts for all of the example programs (see Section 4).

– A program is a sequence of declarations and commands. Such a program is
translated to a top-level function in the same way procedures are, as shown
by the <program> production. This translation is required to support labels
and jumps at the top level of a program, as illustrated in Section 2.2.
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<program> ::= var main = function () {

var JI = new Continuation();

<dcl>*

return function () { <cmd>* };

};

main()();

<dcl-var> ::= var <ident>;

<dcl-proc> ::= var <ident> = function ( <formals>? ) {

var JI = new Continuation();

<dcl>*

return function () { <cmd>* };

};

<dcl-label> ::= var <ident> = function () { JI(function () { <cmd>* }); };

<cmd-goto> ::= <ident>();

<cmd-yield> ::= (function () { <ident> = new Continuation(); <cmd-goto> })();

<exp-call> ::= <ident>( <args>? )()

Fig. 1. Essential grammar of JavaScript in the image of the translation.

– The <dcl-var> production shows that each variable declaration, is translated
directly to a variable declaration in JavaScript. All variables are implicitly
initialized to ⊥, i.e., undefined in JavaScript.

– The <dcl-proc> production shows that a procedure declaration is translated
to a JavaScript function that accepts the same formals and returns a thunk
containing the procedure commands. In a scope visible to the thunk of com-
mands, nested declarations are defined and the return continuation of the
function closure is captured and bound to JI. All declarations are mutually
recursive so that declarations can refer to each other as well as JI.

– A label consists of a name and a sequence of commands. For simplicity
we assume that explicit jumps have been inserted in the program wherever
execution may flow from one label to another. The <dcl-label> production
shows that a label definition is translated to a JavaScript function of no
arguments, whose body applies the return continuation JI to the thunk of
label commands. Thus, invoking this function returns the thunk from the
currently running procedure.

– The <cmd-goto> production shows that goto commands are translated to
ordinary function calls with no arguments in JavaScript.

– The <cmd-yield> production shows how a yield command consists of rebind-
ing the caller’s label with the current continuation, followed by a goto com-
mand to transfer control. The surrounding function declaration is required
to capture the current continuation. The translation must supply both the
from and to labels. The labels are required to be declared in the exact same
block. The yield command, however, may appear elsewhere.
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– The <exp-call> production shows that a procedure call is translated to a
JavaScript function call with the same arguments, and the result of the
application, a thunk of procedure commands, is forced to obtain the actual
result of the procedure call.

All remaining productions, found in Appendix A, show the straightforward and
idiomatic translation to JavaScript.

For simplicity we consider only characters in the ASCII character set with
some restrictions on their use. All identifiers are required to be alpha-numeric;
the set of label identifiers must not overlap with that of variable and procedure
identifiers; and JI is a reserved keyword and must not be used as an identifier. To
declare named functions, we use variable binding and function expressions in the
form of “var <ident> = function ...”. This is necessary as function declarations
can, in our translation, appear in any block statement, whereas in JavaScript
function declarations are only valid at the top-level or directly inside a function
body.

4 A representative collection of program samples

The goal of this section is to illustrate with classical examples the direct-style
correspondence between pidgin Algol with lexically scoped jumps and JavaScript
with continuation objects. We consider in turn backward jumps within the same
block (Section 4.1), backward and forward jumps within the same block (Sec-
tion 4.2), outwards jumps (Section 4.3), and coroutines (Section 4.4). For what
it is worth, our embedding passes Knuth’s man-or-boy test (Section 4.5).

Each of the following kinds of jumps, except for coroutines, can be translated
as a special case using more specialized control structures offered by JavaScript.
We discuss such specialized translation schemes further in Section 5.

4.1 Backward jumps

To simulate backward jumps within the same block, our translation simply de-
clares a sequence of lexical variables, each denoting the continuation of a label,
and uses one of these variables for each jump.

Backward jumps can be used to repeatedly try a computation until a condi-
tion is met, as in a loop. It can also be used to express more involved iteration
patterns that recur in domains such as pattern matching and logical inference.
These patterns are exemplified by the search phase of Knuth, Morris and Pratt’s
string matcher [24].

The KMP string matcher searches for the first occurrence of a string in a
text. It first preprocesses the string into a failure table, then traverses the text
incrementally, searching whether the string is a prefix of the current suffix of the
text. In case of character mismatch, the string is shifted farther by a distance
determined by the failure table. In their original article, Knuth, Morris and Pratt
display a version of the search phase that is ‘compiled’—i.e., specialized—with
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respect to a given string [24, Section 3] [11, Appendix]. Appendix B.1 displays
this specialized version in JavaScript.

A similar illustration of backward jumps can be found in Flanagan and Mat-
sumoto’s book about the Ruby programming language, where they use first-class
continuations to simulate a subset of BASIC [17, Section 5.8.3].

4.2 Backward and forward jumps

To simulate backward and forward jumps within the same block, our translation
declares a group of mutually recursive lexical variables, each denoting the con-
tinuation of a label, and uses one of these variables for each jump. Appendix B.2
shows this simulation at work with Knuth’s modification of Hoare’s Quicksort
program [23, p. 285].

4.3 Outward jumps

In modern parlance, outward jumps are exceptions. Again, our translation simu-
lates them by declaring a lexical variable denoting the continuation of each label
and using one for each jump.

Appendix B.3 displays a program that recursively descends into a binary
tree, testing whether it represents a Calder mobile [13]. If one of the subtrees is
unbalanced, the computation jumps out.

4.4 Coroutines

Whereas calling a subroutine transfers control to its beginning, calling a corou-
tine resumes execution at the point where the coroutine last yielded control [12].
Coroutines are useful for modeling domains with concurrent interacting pro-
cesses. To account for coroutines, we use the <cmd-yield> production in Figure 1.

We have implemented a standard example of stream transducers (mapping
pairs to triples [46]), Knuth’s alternative version of Quicksort using coroutines [23,
p. 287], and samefringe, the prototypical example of asynchronous recursive
traversals [5, 20,35]. The samefringe program is displayed in Appendix B.4.

4.5 Knuth’s man-or-boy test

Finally, for what it is worth, our translator passes Knuth’s man-or-boy test [22],
using explicit thunks to implement call by name. Of course, this test exercises
not jumps but recursion and non-local references. In that sense, it is more Rhino
that passes Knuth’s test than our homomorphic translator.
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5 Conclusion and perspectives

We have realized, in the modern setting of JavaScript, Landin’s visionary cor-
respondence between block-structured programs with jumps and applicative ex-
pressions [27]. Our translation is idiomatic in that it maps the blocks and dec-
larations as well as labels and jumps of the source program homomorphically to
corresponding structures in the target program. The correspondence is so direct,
in fact, that we can regard the image of the translation as a source language, and
thus the translation as an identity function. The idiomaticity of the translation
is the key to its success in producing programs that run with the same asymp-
totic time and space behavior as the Algol-like programs in our source language,
assuming that Rhino implements downwards contargs in a reasonable way.

The simplicity and efficacy of our translation exemplifies how the principle
of idiomaticity is useful for language implementation and language design: the
correspondence between Landin’s J operator and Rhino’s continuation objects
guides the implementation and design of our Algol-like language. In particular,
we believe that a translation should preserve the control structures of source
programs and map them to idiomatic control structures in the target language.

In this regard, our translation is extremely uniform and frugal in that it
maps all control structures using continuation objects. Another extreme strat-
egy, which some might consider less idiomatic and more pervasive, is to follow
Steele [45] and translate all control structures using continuation-passing style or
even trampolining. These translations call for JavaScript implementations that
support either first-class continuations or proper tail recursion. Between these
two simple extremes, there is an admittedly more complex middle path that relies
on a control-flow analysis to detect particular patterns of control and translate
them opportunistically to particular control-flow instructions in JavaScript that
are more widely implemented well. For example:

– Programs that do not use labels and jumps can be translated without the
thunks described in Section 2.2.

– Backward jumps within the same block can be translated to labeled break

and continue statements.
– Backward and forward jumps within the same block can be translated using

a loop that dispatches on a current state. (In the case of Quicksort [23], such
a translation would reverse the ‘boolean variable elimination’ optimization
that motivated Knuth’s use of forward jumps in the first place.)

– Outward jumps can be translated using local exceptions.

In general, each control pattern should be translated idiomatically to, and thus
constitutes a new use case for, a corresponding control structure in JavaScript.

Acknowledgments: This article was written while the second author was visiting
Aarhus University in the fall of 2008. The authors are grateful to Dave Herman
for an e-mail exchange about implementing finite-state machines in JavaScript
and to Florian Loitsch and the anonymous reviewers for their comments. This
work is partly supported by the Danish Natural Science Research Council, Grant
no. 21-03-0545.
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A Grammar of JavaScript in the image of the translation

<ascii> ::= ....

<ident> ::= [a-zA-Z0-9]+ -- not including JI

<program> ::= var main = function () {

var JI = new Continuation();

<dcl>*

return function () { <cmd>* };

};

main()();

<dcl> ::= <dcl-var>

| <dcl-proc>

| <dcl-label>

<cmd> ::= <cmd-block>

| <cmd-assign>

| <cmd-goto>

| <cmd-yield>

| <cmd-return>

| <cmd-if>

| <cmd-print>

| <cmd-exp>

<exp> ::= <exp-var>

| <exp-int>

| <exp-bool>

| <exp-chr>

| <exp-str>

| <exp-bottom>

| <exp-call>

| <exp-array>

| <exp-index>

| <exp-length>

| <exp-binary>

| <exp-nest>

<dcl-var> ::= var <ident>;

<formals> ::= <ident> | <ident> , <formals>

<dcl-proc> ::= var <ident> = function ( <formals>? ) {

var JI = new Continuation();

<dcl>*

return function () { <cmd>* };

};

<dcl-label> ::= var <ident> = function () { JI(function () { <cmd>* }); };

<cmd-block> ::= { <dcl>* <cmd>* }

<cmd-assign> ::= <lvalue> = <exp>;

<cmd-goto> ::= <ident>();

<cmd-yield> ::= (function () { <ident> = new Continuation(); <cmd-goto> })();

<cmd-return> ::= return <exp>;

<cmd-if> ::= if ( <exp> ) <cmd>

<cmd-print> ::= print( <exp> );

<cmd-exp> ::= <exp>;

<lvalue> ::= <exp-var> | <exp-index>
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<exp-var> ::= <ident>

<exp-int> ::= [0-9]+

<exp-bool> ::= true | false

<exp-chr> ::= ’<ascii>’

<exp-str> ::= "<ascii>*"

<exp-bottom> ::= undefined

<args> ::= <exp> | <exp> , <args>

<exp-call> ::= <ident>( <args>? )()

<array-elm> ::= <exp> | <exp> , <array-elm>

<exp-array> ::= [ <array-elm> ]

<exp-index> ::= <exp>[ <exp> ]

<exp-length> ::= <exp>.length

<bin-op> ::= == | != | < | > | + | - | *

<exp-binary> ::= <exp> <bin-op> <exp>

<exp-nest> ::= ( <exp> )

B Example JavaScript programs

In the following examples we represent trees in terms of arrays. Depending on
the use, a tree can have either weighted internal nodes, as used in Calder mobiles
(Appendix B.3), or weighted leaf nodes, as used in Samefringe (Appendix B.4).
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•
1 2

3
??

??
??

?

��
� ??

?��
��

��
� 1

2
• •

•
??

??
??

?

��
� ??

?��
��

��
�

In each case we denote the weightless nodes (•) with −1. A tree is then encoded
as a linear block of values with the successor functions left(n) = 2n + 1 and
right(n) = 2n+ 2 as illustrated below.

&& ''
77 77

'' ''

B.1 Backward jumps: KMP string search

var main = function () {

var JI = new Continuation();

var kmp = function (text) {

var JI = new Continuation();

var k;

var n;

var L0 = function () { JI(function () {

k = k + 1;

L1();

});};
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var L1 = function () { JI(function () {

if (text[k] != ’a’) L0();

k = k + 1;

if (k > n) return -1;

L2();

});};

var L2 = function () { JI(function () {

if (text[k] != ’b’) L1();

k = k + 1;

L3();

});};

var L3 = function () { JI(function () {

if (text[k] != ’c’) L1();

k = k + 1;

L4();

});};

var L4 = function () { JI(function () {

if (text[k] != ’a’) L0();

k = k + 1;

L5();

});};

var L5 = function () { JI(function () {

if (text[k] != ’b’) L1();

k = k + 1;

L6();

});};

var L6 = function () { JI(function () {

if (text[k] != ’c’) L1();

k = k + 1;

L7();

});};

var L7 = function () { JI(function () {

if (text[k] != ’a’) L0();

k = k + 1;

L8();

});};

var L8 = function () { JI(function () {

if (text[k] != ’c’) L5();

k = k + 1;

L9();

});};

var L9 = function () { JI(function () {

if (text[k] != ’a’) L0();

k = k + 1;

L10();

});};

var L10 = function () { JI(function () {

if (text[k] != ’b’) L1();

k = k + 1;

return k - 10;
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});};

return function () {

k = 0;

n = text.length;

text = text + "@a";

L0();

};

};

return function () {

print(kmp("ababcabcabcacabcacab")());

};

};

main()();

B.2 Backward and forward jumps: Quicksort

var main = function () {

var JI = new Continuation();

var A;

var qs = function (m, n) {

var JI = new Continuation();

var i;

var j;

var v;

var loop1 = function () { JI(function () {

if (A[i] > v) {

A[j] = A[i];

upf();

}

upt();

});};

var upt = function () { JI(function () {

i = i + 1;

if (i < j) loop1();

common();

});};

var loop2 = function () { JI(function () {

if (v > A[j]) {

A[i] = A[j];

upt();

}

upf();

});};

var upf = function () { JI(function () {

j = j - 1;

if (i < j) loop2();

common();

});};

var common = function () { JI(function () {

A[j] = v;
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if (n - m > 1) {

qs(m, j - 1)();

qs(j + 1, n)();

}

});};

return function () {

i = m;

j = n;

v = A[j];

loop1();

};

};

return function () {

A = [5, 2, 1, 4, 6, 3];

print("Random: " + A);

qs(0, A.length - 1)();

print("Sorted: " + A);

};

};

main()();

B.3 Outward jumps: Calder mobiles

var main = function () {

var JI = new Continuation();

var calder = function (T) {

var JI = new Continuation();

var fail = function () { JI(function () {

return false;

});};

var visit = function (i) {

var JI = new Continuation();

var n;

var n1;

var n2;

return function () {

n = T[i];

if (n == -1) return 0;

i = i * 2;

n1 = visit(i + 1)();

n2 = visit(i + 2)();

if (n1 == n2) return n + n1 + n2;

fail();

};

};

return function () {

visit(0)();

return true;

};

};

15



return function () {

print(calder([2, 5, 1, 2, 2, 4, 4,

-1, -1, -1, -1, -1, -1, -1, -1])());

};

};

main()();

B.4 Coroutines: Samefringe

var main = function () {

var JI = new Continuation();

var t1;

var t2;

var traverse = function (t, f) {

var JI = new Continuation();

var visit = function (i) {

var JI = new Continuation();

var n;

return function () {

n = t[i];

if (n != -1) return f(n)();

i = 2 * i;

visit(i + 1)();

visit(i + 2)();

};

};

return function () {

visit(0)();

};

};

var samefringe = function (t1, t2) {

var JI = new Continuation();

var v1;

var v2;

var next1 = function (e) {

var JI = new Continuation();

return function () {

v1 = e;

(function () { l1 = new Continuation(); l2(); })();

};

};

var next2 = function (e) {

var JI = new Continuation();

return function () {

v2 = e;

(function () { l2 = new Continuation(); compare(); })();

};

};

var l1 = function () { JI(function () {

traverse(t1, next1)();
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next1(undefined)();

});};

var l2 = function () { JI(function () {

traverse(t2, next2)();

next2(undefined)();

});};

var compare = function () { JI(function () {

if (v1 != v2) return false;

if (v1 == undefined) return true;

l1();

});};

return function () {

l1();

};

};

return function () {

t1 = [-1, 1,

-1, undefined, undefined, 2, 3];

t2 = [-1,

-1, 3, 1, 2, undefined, undefined];

print(samefringe(t1, t2)());

};

};

main()();
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